A155755 Triangle T(n, k) = A143491(n+2, k+2) + A143491(n+2, n-k+2), read by rows.
2, 3, 3, 7, 10, 7, 25, 35, 35, 25, 121, 168, 142, 168, 121, 721, 1064, 735, 735, 1064, 721, 5041, 8055, 5399, 3330, 5399, 8055, 5041, 40321, 69299, 49371, 22449, 22449, 49371, 69299, 40321, 362881, 663740, 509830, 223300, 109298, 223300, 509830, 663740, 362881
Offset: 0
Examples
Triangle begins as: 2; 3, 3;, 7, 10, 7; 25, 35, 35, 25; 121, 168, 142, 168, 121; 721, 1064, 735, 735, 1064, 721; 5041, 8055, 5399, 3330, 5399, 8055, 5041; 40321, 69299, 49371, 22449, 22449, 49371, 69299, 40321; 362881, 663740, 509830, 223300, 109298, 223300, 509830, 663740, 362881;
Links
- G. C. Greubel, Rows n = 0..50 of the triangle, flattened
Crossrefs
Cf. A143491.
Programs
-
Mathematica
(* First program *) q[x_, n_]:= Product[x +n-i+1, {i,0,n-1}]; p[x_, n_]:= q[x, n] + x^n*q[1/x, n]; Table[CoefficientList[p[x, n], x], {n,0,12}]//Flatten (* modified by G. C. Greubel, Jun 06 2021 *) (* Second program *) A143491[n_, k_]:= (n-2)!*Sum[(n-k-j+1)*Abs[StirlingS1[j+k-2, k-2]]/(j+k-2)!, {j,0,n-k}]; A155755[n_, k_]:= A143491[n+2, k+2] + A143491[n+2, n-k+2]; Table[A155755[n, k], {n,0,12}, {k,0,n}]//Flatten (* G. C. Greubel, Jun 06 2021 *)
-
Sage
def A143491(n,k): return factorial(n-2)*sum( (n-k-j+1)*stirling_number1(j+k-2, k-2)/factorial(j+k-2) for j in (0..n-k) ) def A155755(n,k): return A143491(n+2, k+2) + A143491(n+2, n-k+2) flatten([[A155755(n, k) for k in (0..n)] for n in (0..12)]) # G. C. Greubel, Jun 06 2021
Comments