A143495
Triangle read by rows: 3-Stirling numbers of the second kind.
Original entry on oeis.org
1, 3, 1, 9, 7, 1, 27, 37, 12, 1, 81, 175, 97, 18, 1, 243, 781, 660, 205, 25, 1, 729, 3367, 4081, 1890, 380, 33, 1, 2187, 14197, 23772, 15421, 4550, 644, 42, 1, 6561, 58975, 133057, 116298, 47271, 9702, 1022, 52, 1, 19683, 242461, 724260, 830845, 447195
Offset: 3
Triangle begins
n\k|....3....4....5....6....7....8
==================================
3..|....1
4..|....3....1
5..|....9....7....1
6..|...27...37...12....1
7..|...81..175...97...18....1
8..|..243..781..660..205...25....1
...
T(5,4) = 7. The set {1,2,3,4,5} can be partitioned into four subsets such that 1, 2 and 3 belong to different subsets in 7 ways: {{1}{2}{3}{4,5}}, {{1}{2}{5}{3,4}}, {{1}{2}{4}{3,5}}, {{1}{3}{4}{2,5}}, {{1}{3}{5}{2,4}}, {{2}{3}{4}{1,5}} and {{2}{3}{5}{1,4}}.
From _Peter Bala_, Feb 23 2025: (Start)
The array factorizes as
/ 1 \ /1 \ /1 \ /1 \
| 3 1 | | 3 1 ||0 1 ||0 1 |
| 9 7 1 | = | 9 4 1 ||0 3 1 ||0 0 1 | ...
|27 37 12 1 | |27 13 5 1 ||0 9 4 1 ||0 0 3 1 |
|81 175 97 18 1| |81 40 18 6 1||0 27 13 5 1 ||0 0 9 4 1 |
|... | |... ||... ||... |
where, in the infinite product on the right-hand side, the first array is the Riordan array (1/(1 - 3*x), x/(1 - x)). See A106516. (End)
- Peter Bala, Factorising (r,b)-Stirling arrays
- Andrei Z. Broder, The r-Stirling numbers, Report Number: CS-TR-82-949, Stanford University, Department of Computer Science; see also, Discrete Math. 49, 241-259 (1984).
- A. Dzhumadildaev and D. Yeliussizov, Path decompositions of digraphs and their applications to Weyl algebra, arXiv preprint arXiv:1408.6764v1 [math.CO], 2014. [Version 1 contained many references to the OEIS, which were removed in Version 2. - _N. J. A. Sloane_, Mar 28 2015]
- Askar Dzhumadil’daev and Damir Yeliussizov, Walks, partitions, and normal ordering, Electronic Journal of Combinatorics, 22(4) (2015), #P4.10.
- V. V. Mikhailov, Ordering of some boson operator functions, J. Phys A: Math. Gen. 16 (1983) 3817-3827.
- V. V. Mikhailov, Normal ordering and generalised Stirling numbers, J. Phys A: Math. Gen. 18 (1985) 231-235.
- Erich Neuwirth, Recursively defined combinatorial functions: Extending Galton's board, Discrete Math. 239 No. 1-3, 33-51 (2001).
- L. Liu and Y. Wang, A unified approach to polynomial sequences with only real zeros, arXiv:math/0509207 [math.CO], 2005-2006.
- Michael J. Schlosser and Meesue Yoo, Elliptic Rook and File Numbers, Electronic Journal of Combinatorics, 24(1) (2017), #P1.31.
Cf.
A005061 (column 4),
A005494 (row sums),
A008277,
A016753 (column 5),
A028025 (column 6),
A049458 (matrix inverse),
A106516,
A143492,
A143494,
A143496,
A143498.
-
A143495 := (n, k) -> (1/(k-3)!)*add((-1)^(k-i-1)*binomial(k-3,i)*(i+3)^(n-3), i = 0..k-3): for n from 3 to 12 do seq(A143495(n, k), k = 3..n) end do;
-
nmax = 12; t[n_, k_] := 1/(k-3)!* Sum[ (-1)^(k-j-1)*Binomial[k-3, j]*(j+3)^(n-3), {j, 0, k-3}]; Flatten[ Table[ t[n, k], {n, 3, nmax}, {k, 3, n}]] (* Jean-François Alcover, Dec 07 2011, after Maple *)
-
@CachedFunction
def stirling2r(n, k, r) :
if n < r: return 0
if n == r: return 1 if k == r else 0
return stirling2r(n-1, k-1, r) + k*stirling2r(n-1, k, r)
A143495 = lambda n, k: stirling2r(n, k, 3)
for n in (3..8): [A143495(n, k) for k in (3..n)] # Peter Luschny, Nov 19 2012
A062138
Coefficient triangle of generalized Laguerre polynomials n!*L(n,5,x)(rising powers of x).
Original entry on oeis.org
1, 6, -1, 42, -14, 1, 336, -168, 24, -1, 3024, -2016, 432, -36, 1, 30240, -25200, 7200, -900, 50, -1, 332640, -332640, 118800, -19800, 1650, -66, 1, 3991680, -4656960, 1995840, -415800, 46200, -2772, 84, -1, 51891840, -69189120
Offset: 0
Triangle begins:
{1};
{6, -1};
{42, -14, 1};
{336, -168, 24, -1};
...
2!*L(2, 5, x) = 42-14*x+x^2.
- A. Messiah, Quantum mechanics, vol. 1, p. 419, eq.(XI.18a), North Holland, 1969.
-
Flatten[Table[((-1)^m)*n!*Binomial[n+5,n-m]/m!,{n,0,8},{m,0,n}]] (* Indranil Ghosh, Feb 24 2017 *)
-
tabl(nn) = {for (n=0, nn, for (m=0, n, print1(((-1)^m)*n!*binomial(n+5, n-m)/m!, ", "); ); print(); ); } \\ Indranil Ghosh, Feb 24 2017
-
row(n) = Vecrev(n!*pollaguerre(n, 5)); \\ Michel Marcus, Feb 06 2021
-
import math
f=math.factorial
def C(n, r):return f(n)//f(r)//f(n-r)
i=-1
for n in range(26):
for m in range(n+1):
i += 1
print(str(i)+" "+str(((-1)**m)*f(n)*C(n+5, n-m)//f(m))) # Indranil Ghosh, Feb 24 2017
A143497
Triangle of unsigned 2-Lah numbers.
Original entry on oeis.org
1, 4, 1, 20, 10, 1, 120, 90, 18, 1, 840, 840, 252, 28, 1, 6720, 8400, 3360, 560, 40, 1, 60480, 90720, 45360, 10080, 1080, 54, 1, 604800, 1058400, 635040, 176400, 25200, 1890, 70, 1, 6652800, 13305600, 9313920, 3104640, 554400, 55440, 3080, 88, 1
Offset: 2
Triangle begins:
=========================================
n\k | 2 3 4 5 6 7
----+------------------------------------
2 | 1
3 | 4 1
4 | 20 10 1
5 | 120 90 18 1
6 | 840 840 252 28 1
7 | 6720 8400 3360 560 40 1
...
T(4,3) = 10. The ten partitions of {1,2,3,4} into 3 ordered lists such that the elements 1 and 2 lie in different lists are: {1}{2}{3,4} and {1}{2}{4,3}, {1}{3}{2,4} and {1}{3}{4,2}, {1}{4}{2,3} and {1}{4}{3,2}, {2}{3}{1,4} and {2}{3}{4,1}, {2}{4}{1,3} and {2}{4}{3,1}. The remaining two partitions {3}{4}{1,2} and {3}{4}{2,1} are not allowed because the elements 1 and 2 belong to the same block.
- Muniru A Asiru, Table of n, a(n) for n = 2..4951 Rows n = 2..100
- A. Z. Broder, The r-Stirling numbers, Report CS-TR-82-949, Stanford University, Department of Computer Science, 1982.
- A. Z. Broder, The r-Stirling numbers, Discrete Math. 49, 241-259 (1984).
- Gi-Sang Cheon and Ji-Hwan Jung, r-Whitney numbers of Dowling lattices, Discrete Math., 312 (2012), 2337-2348.
- Eldar Fischer, Johann A. Makowsky, and Vsevolod Rakita, MC-finiteness of restricted set partition functions, arXiv:2302.08265 [math.CO], 2023.
- Robert S. Maier, Boson Operator Ordering Identities from Generalized Stirling and Eulerian Numbers, arXiv:2308.10332 [math.CO], 2023. See p. 19.
- Erich Neuwirth, Recursively defined combinatorial functions: Extending Galton's board, Tech Report TR 99-05, 1999.
- Erich Neuwirth, Recursively defined combinatorial functions: Extending Galton's board, Discrete Math. 239 No. 1-3, 33-51 (2001).
- G. Nyul and G. Rácz, The r-Lah numbers, Discrete Mathematics, 338 (2015), 1660-1666.
- Marko Petkovsek and Tomaz Pisanski, Combinatorial interpretation of unsigned Stirling and Lah numbers, University of Ljubljana, Preprint series, Vol. 40 (2002), 837.
- Jose L. Ramirez and M. Shattuck, A (p, q)-Analogue of the r-Whitney-Lah Numbers, Journal of Integer Sequences, 19, 2016, #16.5.6.
- Michael J. Schlosser and Meesue Yoo, Elliptic Rook and File Numbers, Electronic Journal of Combinatorics, 24(1) (2017), #P1.31.
- M. Shattuck, Generalized r-Lah numbers, arXiv:1412.8721 [math.CO], 2014.
Cf.
A001715 (column 2),
A007318,
A008275,
A008277,
A061206 (column 3),
A062137,
A062141 -
A062144 ( column 4 to column 7),
A062146 (alt. row sums),
A062147 (row sums),
A105278 (unsigned Lah numbers),
A143491,
A143494,
A143498,
A143499.
-
T:=Flat(List([2..10],n->List([2..n],k->(Factorial(n-2)/Factorial(k-2))*Binomial(n+1,k+1)))); # Muniru A Asiru, Nov 27 2018
-
T := (n, k) -> ((n-2)!/(k-2)!)*binomial(n+1, k+1):
for n from 2 to 11 do seq(T(n, k), k = 2..n) od;
-
T[n_, k_] := (n-2)!/(k-2)!*Binomial[n+1, k+1]; Table[T[n, k], {n,2,10}, {k,2,n}] // Flatten (* Amiram Eldar, Nov 27 2018 *)
-
create_list((n - 2)!/(k - 2)!*binomial(n + 1, k + 1), n, 2, 12, k, 2, n); /* Franck Maminirina Ramaharo, Nov 27 2018 */
A143492
Unsigned 3-Stirling numbers of the first kind.
Original entry on oeis.org
1, 3, 1, 12, 7, 1, 60, 47, 12, 1, 360, 342, 119, 18, 1, 2520, 2754, 1175, 245, 25, 1, 20160, 24552, 12154, 3135, 445, 33, 1, 181440, 241128, 133938, 40369, 7140, 742, 42, 1, 1814400, 2592720, 1580508, 537628, 111769, 14560, 1162, 52, 1, 19958400
Offset: 3
Triangle begins
n\k|.....3.....4.....5.....6.....7.....8
========================================
3..|.....1
4..|.....3.....1
5..|....12.....7.....1
6..|....60....47....12.....1
7..|...360...342...119....18.....1
8..|..2520..2754..1175...245....25.....1
...
T(5,4) = 7. The permutations of {1,2,3,4,5} with 4 cycles such that 1, 2 and 3 belong to different cycles are: (14)(2)(3)(5), (15)(2)(3)(4), (24)(1)(3)(5), (25)(1)(3)(4), (34)(1)(2)(5), (35)(1)(2)(4) and (45)(1)(2)(3).
- Broder Andrei Z., The r-Stirling numbers, Discrete Math. 49, 241-259 (1984)
- A. Dzhumadildaev and D. Yeliussizov, Path decompositions of digraphs and their applications to Weyl algebra, arXiv preprint arXiv:1408.6764v1, 2014. [Version 1 contained many references to the OEIS, which were removed in Version 2. - _N. J. A. Sloane_, Mar 28 2015]
- Askar Dzhumadil’daev and Damir Yeliussizov, Walks, partitions, and normal ordering, Electronic Journal of Combinatorics, 22(4) (2015), #P4.10.
- Erich Neuwirth, Recursively defined combinatorial functions: Extending Galton's board, Discrete Math. 239 No. 1-3, 33-51 (2001).
- Michael J. Schlosser and Meesue Yoo, Elliptic Rook and File Numbers, Electronic Journal of Combinatorics, 24(1) (2017), #P1.31.
-
with combinat: T := (n, k) -> (n-3)! * add(binomial(n-j-1,2)*abs(stirling1(j,k-3))/j!,j = k-3..n-3): for n from 3 to 12 do seq(T(n, k), k = 3..n) end do;
A143499
Triangle of unsigned 4-Lah numbers.
Original entry on oeis.org
1, 8, 1, 72, 18, 1, 720, 270, 30, 1, 7920, 3960, 660, 44, 1, 95040, 59400, 13200, 1320, 60, 1, 1235520, 926640, 257400, 34320, 2340, 78, 1, 17297280, 15135120, 5045040, 840840, 76440, 3822, 98, 1, 259459200, 259459200, 100900800, 20180160, 2293200
Offset: 4
Triangle begins
n\k|......4......5......6......7......8......9
==============================================
4..|......1
5..|......8......1
6..|.....72.....18......1
7..|....720....270.....30......1
8..|...7920...3960....660.....44......1
9..|..95040..59400..13200...1320.....60......1
...
T(5,4) = 8. The partitions of {1,2,3,4,5} into 4 ordered lists, such that the elements 1, 2, 3 and 4 lie in different lists, are: {1}{2}{3}{4,5} and {1}{2}{3}{5,4}, {1}{2}{4}{3,5} and {1}{2}{4}{5,3}, {1}{3}{4}{2,5} and {1}{3}{4}{5,2}, {2}{3}{4}{1,5} and {2}{3}{4}{5,1}.
- Erich Neuwirth, Recursively defined combinatorial functions: Extending Galton's board, Discrete Math. 239 No. 1-3, 33-51 (2001).
- G. Nyul, G. Rácz, The r-Lah numbers, Discrete Mathematics, 338 (2015), 1660-1666.
- Michael J. Schlosser and Meesue Yoo, Elliptic Rook and File Numbers, Electronic Journal of Combinatorics, 24(1) (2017), #P1.31.
- M. Shattuck, Generalized r-Lah numbers, arXiv:1412.8721 [math.CO], 2014
-
with combinat: T := (n, k) -> (n-4)!/(k-4)!*binomial(n+3,k+3): for n from 4 to 13 do seq(T(n, k), k = 4..n) end do;
-
T[n_, k_] := (n-4)!/(k-4)!*Binomial[n+3, k+3]; Table[T[n, k], {n, 4, 10}, {k, 4, n}] // Flatten (* Amiram Eldar, Nov 26 2018 *)
A371259
Triangle read by rows, (2, 3)-Lah numbers.
Original entry on oeis.org
1, 36, 1, 1764, 100, 1, 112896, 9864, 200, 1, 9144576, 1099296, 34064, 344, 1, 914457600, 142159392, 6004512, 92200, 540, 1, 110649369600, 21385410048, 1156921920, 24075712, 213700, 796, 1, 15933509222400, 3724783667712, 248142106368, 6573957120, 78782912, 443744, 1120, 1
Offset: 3
Triangle begins:
1;
36, 1;
1764, 100, 1;
112896, 9864, 200, 1;
9144576, 1099296, 34064, 344, 1;
914457600, 142159392, 6004512, 92200, 540, 1;
110649369600, 21385410048, 1156921920, 24075712, 213700, 796, 1.
...
An example for T(4, 3). The corresponding partitions are
pi(1) = {(1),(2),(3,4)},
pi(2) = {(1),(2),(4,3)},
pi(3) = {(1),(3),(2,4)},
pi(4) = {(1),(3),(4,2)},
pi(5) = {(1,4),(2),(3)},
pi(6) = {(4,1),(2),(3)}, since A143498 for n=4, k=3 equals 6. Sets of their block leaders are bl(pi(1)) = bl(pi(2)) = bl(pi(3)) = bl(pi(4)) = bl(pi(5)) = bl(pi(6)) = {1,2,3}.
Compute the number of ordered 2-tuples (i.e., ordered pairs) of partitions pi(1), pi(2), ..., pi(6) such that partitions in the same pair share the same set of block leaders. As there are six partitions with the set of block leaders equal to {1,2,3}, T(4, 3) = 6^2 = 36.
-
T:= proc(n, k) option remember; `if`(k<3 or k>n, 0,
`if`(n=k, 1, T(n-1, k-1)+(n+k-1)^2*T(n-1, k)))
end:
seq(seq(T(n, k), k=3..n), n=3..10);
-
A371259[n_, k_] := A371259[n, k] = Which[n < k || k < 3, 0, n == k, 1, True, A371259[n-1, k-1] + (n+k-1)^2*A371259[n-1, k]];
Table[A371259[n, k], {n, 3, 10},{k, 3, n}] (* Paolo Xausa, Jun 11 2024 *)
-
A371259 = lambda n, k: 0 if (k < 3 or k > n) else (1 if (n == 3 and k == 3) else (A371259(n-1, k-1) + ((n + k - 1)**2) * A371259(n-1, k)))
print([A371259(n, k) for n in range(3, 11) for k in range(3, n+1)])
A372208
Triangle read by rows, (3, 3)-Lah numbers.
Original entry on oeis.org
1, 216, 1, 74088, 728, 1, 37933056, 604800, 1728, 1, 27653197824, 642733056, 2904768, 3456, 1, 27653197824000, 883130895360, 5662172160, 10497600, 6200, 1, 36806406303744000, 1553703385006080, 13322923130880, 34467586560, 31422600, 10296, 1, 63601470092869632000, 3450292743162101760, 38111804456140800, 129651027770880, 163174556160, 82006848, 16128, 1
Offset: 3
Triangle begins:
1;
216, 1;
74088, 728, 1;
37933056, 604800, 1728, 1;
27653197824, 642733056, 2904768, 3456, 1;
27653197824000, 883130895360, 5662172160, 10497600, 6200, 1.
...
An example for T(4, 3). The corresponding partitions are
pi(1) = {(1),(2),(3,4)},
pi(2) = {(1),(2),(4,3)},
pi(3) = {(1),(3),(2,4)},
pi(4) = {(1),(3),(4,2)},
pi(5) = {(1,4),(2),(3)},
pi(6) = {(4,1),(2),(3)}, since A143498 for n=4, k=3 equals 6. Sets of their block leaders are bl(pi(1)) = bl(pi(2)) = bl(pi(3)) = bl(pi(4)) = bl(pi(5)) = bl(pi(6)) = {1,2,3}. Compute the number of ordered 3-tuples (i.e., ordered pairs) of partitions pi(1), pi(2), ..., pi(6) such that partitions in the same pair share the same set of block leaders. As there are six partitions with the set of block leaders equal to {1,2,3}, T(4, 3) = 6^3 = 216.
-
T:= proc(n, k) option remember; `if`(k<3 or k>n, 0,
`if`(n=k, 1, T(n-1, k-1)+(n+k-1)^3*T(n-1, k)))
end:
seq(seq(T(n, k), k=3..n), n=3..10);
-
A372208[n_, k_] := A372208[n, k] = Which[n < k || k < 3, 0, n == k, 1, True, A372208[n-1, k-1] + (n+k-1)^3*A372208[n-1, k]];
Table[A372208[n, k], {n, 3, 10}, {k, 3, n}] (* Paolo Xausa, Jun 11 2024 *)
-
A372208 = lambda n, k: 0 if (k < 3 or k > n) else (1 if (n == 3 and k == 3) else (A372208(n-1, k-1) + ((n + k - 1)**3) * A372208(n-1, k)))
print([A372208(n, k) for n in range(3, 11) for k in range(3, n+1)])
Showing 1-7 of 7 results.
Comments