cp's OEIS Frontend

This is a front-end for the Online Encyclopedia of Integer Sequences, made by Christian Perfect. The idea is to provide OEIS entries in non-ancient HTML, and then to think about how they're presented visually. The source code is on GitHub.

A143520 a(n) is n times number of divisors of n if n is odd, zero if n is twice odd, n times number of divisors of n/4 if n is divisible by 4.

Original entry on oeis.org

1, 0, 6, 4, 10, 0, 14, 16, 27, 0, 22, 24, 26, 0, 60, 48, 34, 0, 38, 40, 84, 0, 46, 96, 75, 0, 108, 56, 58, 0, 62, 128, 132, 0, 140, 108, 74, 0, 156, 160, 82, 0, 86, 88, 270, 0, 94, 288, 147, 0, 204, 104, 106, 0, 220, 224, 228, 0, 118, 240, 122, 0, 378, 320, 260, 0, 134, 136
Offset: 1

Views

Author

Michael Somos, Aug 22 2008

Keywords

Examples

			q + 6*q^3 + 4*q^4 + 10*q^5 + 14*q^7 + 16*q^8 + 27*q^9 + 22*q^11 + 24*q^12 + ...
		

Crossrefs

Programs

  • Haskell
    a143520 n = product $ zipWith (\p e -> (e + 2 * mod p 2 - 1) * p ^ e)
                                  (a027748_row n) (a124010_row n)
    -- Reinhard Zumkeller, Jan 21 2014
  • Mathematica
    Abs@Total[# (-1)^Divisors[#]] & /@ Range[68] (* George Beck, Oct 25 2014 *)
    f[p_, e_] := (e + 1)*p^e; f[2, e_] := (e - 1)*2^e; a[1] = 1; a[n_] := Times @@ f @@@ FactorInteger[n]; Array[a, 100] (* Amiram Eldar, Nov 29 2022 *)
  • PARI
    {a(n) = local(A, p, e); if( n<1, 0, A = factor(n); prod(k=1, matsize(A)[1], if(p = A[k, 1], e = A[k, 2]; (e - (-1)^p) * p^e)))}
    
  • PARI
    {a(n) = if( n<1, 0, polcoeff( sum(k=1, n, k * x^k / (1 - (-x)^k)^2, x*O(x^n)), n))}
    

Formula

a(n) is multiplicative with a(2^e) = (e-1) * 2^e if e>0, a(p^e) = (e+1) * p^e if p>2.
a(4*n + 2) = 0.
G.f.: Sum_{k>0} k * x^k / (1 - (-x)^k)^2.
A038040(2*n + 1) = a(2*n + 1); 4 * A038040(n) = a(4*n).
From Amiram Eldar, Nov 29 2022: (Start)
a(n) = n * A112329(n).
Dirichlet g.f.: zeta(s-1)^2*(1+2^(3-2*s)-2^(2-s)).
Sum_{k=1..n} a(k) ~ n^2*log(n)/4 + (4*gamma-1)*n^2/8, where gamma is Euler's constant (A001620). (End)