A143520 a(n) is n times number of divisors of n if n is odd, zero if n is twice odd, n times number of divisors of n/4 if n is divisible by 4.
1, 0, 6, 4, 10, 0, 14, 16, 27, 0, 22, 24, 26, 0, 60, 48, 34, 0, 38, 40, 84, 0, 46, 96, 75, 0, 108, 56, 58, 0, 62, 128, 132, 0, 140, 108, 74, 0, 156, 160, 82, 0, 86, 88, 270, 0, 94, 288, 147, 0, 204, 104, 106, 0, 220, 224, 228, 0, 118, 240, 122, 0, 378, 320, 260, 0, 134, 136
Offset: 1
Examples
q + 6*q^3 + 4*q^4 + 10*q^5 + 14*q^7 + 16*q^8 + 27*q^9 + 22*q^11 + 24*q^12 + ...
Links
- Reinhard Zumkeller, Table of n, a(n) for n = 1..10000
Programs
-
Haskell
a143520 n = product $ zipWith (\p e -> (e + 2 * mod p 2 - 1) * p ^ e) (a027748_row n) (a124010_row n) -- Reinhard Zumkeller, Jan 21 2014
-
Mathematica
Abs@Total[# (-1)^Divisors[#]] & /@ Range[68] (* George Beck, Oct 25 2014 *) f[p_, e_] := (e + 1)*p^e; f[2, e_] := (e - 1)*2^e; a[1] = 1; a[n_] := Times @@ f @@@ FactorInteger[n]; Array[a, 100] (* Amiram Eldar, Nov 29 2022 *)
-
PARI
{a(n) = local(A, p, e); if( n<1, 0, A = factor(n); prod(k=1, matsize(A)[1], if(p = A[k, 1], e = A[k, 2]; (e - (-1)^p) * p^e)))}
-
PARI
{a(n) = if( n<1, 0, polcoeff( sum(k=1, n, k * x^k / (1 - (-x)^k)^2, x*O(x^n)), n))}
Formula
a(n) is multiplicative with a(2^e) = (e-1) * 2^e if e>0, a(p^e) = (e+1) * p^e if p>2.
a(4*n + 2) = 0.
G.f.: Sum_{k>0} k * x^k / (1 - (-x)^k)^2.
From Amiram Eldar, Nov 29 2022: (Start)
a(n) = n * A112329(n).
Dirichlet g.f.: zeta(s-1)^2*(1+2^(3-2*s)-2^(2-s)).
Sum_{k=1..n} a(k) ~ n^2*log(n)/4 + (4*gamma-1)*n^2/8, where gamma is Euler's constant (A001620). (End)