cp's OEIS Frontend

This is a front-end for the Online Encyclopedia of Integer Sequences, made by Christian Perfect. The idea is to provide OEIS entries in non-ancient HTML, and then to think about how they're presented visually. The source code is on GitHub.

Showing 1-9 of 9 results.

A370093 Decimal expansion of Lichtman constant f(N*(2)).

Original entry on oeis.org

8, 9, 0, 9, 2, 5, 4, 7, 9, 4, 7, 6, 3, 1, 8, 3, 3, 2, 1, 3, 7, 2, 6, 2, 6, 2, 1, 9, 9, 5, 9, 8, 8, 2, 9, 3, 8, 9, 7, 8, 1, 8, 1, 3, 8, 1, 6, 5, 2, 7, 6, 3, 8, 9, 8, 3, 2, 9, 0, 7, 5, 6, 6, 9, 9, 8, 9, 1, 3, 4, 4, 1, 0, 6, 1, 4, 5, 0, 5, 2, 0, 7, 3, 6, 6, 4, 9, 7, 3, 3, 5, 9, 2, 7, 6, 2, 3, 2, 7, 5, 0, 3, 3, 3, 8, 3
Offset: 0

Views

Author

Artur Jasinski, Feb 09 2024

Keywords

Comments

Definition:
f(N*(k)) = Integral_{s>=1} P_k*(s), where P_k*(s) = Sum_{n>1 and (big) Omega(n)=k} mu(n)^2/n^s, where mu is Möbius (or Moebius) Mu function see A008683, and (big) Omega is number of prime divisors of n counted with multiplicity see A001222.
Lichtman constant f(N*(1)) see A137245.
Lichtman constant f(N*(2)) this sequence.
Lichtman constant f(N*(3)) see A370112.
Lichtman constant f(N*(4)) see A370113.
Limit_{k->oo} f(N*(k)) = 6/Pi^2 = 0.607927101854... see A059956.
Value computed and communicated by Bill Allombert.

Examples

			0.890925479476318332...
		

Crossrefs

Programs

  • PARI
    pz(x)= sum(n=1,max(2,bitprecision(x)/x),my(a=moebius(n));if(a!=0,a*log(zeta(n*x))/n));
    Lichtman(n)=intnum(s=1,[oo,log(2)],exp(-sum(i=1,n,pz(i*s)*x^i/i)+O(x^(n+1)))-1)
    Lichtman(20)
    \\ Bill Allombert, Feb 14 2014 [via Artur Jasinski]

A370112 Decimal expansion of Lichtman constant f(N*(3)).

Original entry on oeis.org

7, 1, 3, 1, 2, 3, 8, 0, 0, 5, 0, 9, 8, 9, 0, 2, 5, 5, 4, 1, 2, 0, 2, 9, 2, 7, 9, 0, 6, 9, 0, 6, 8, 1, 8, 4, 2, 5, 7, 6, 3, 0, 4, 1, 3, 8, 9, 8, 2, 8, 4, 3, 9, 9, 2, 7, 5, 0, 6, 8, 6, 5, 5, 4, 6, 1, 0, 1, 2, 6, 7, 2, 9, 3, 4, 9, 2, 4, 7, 7, 0, 8, 6, 2, 3, 9, 3, 6, 3, 8, 6, 3, 7, 1, 3, 3, 7, 4, 9, 1, 6, 9, 7, 4, 8
Offset: 0

Views

Author

Artur Jasinski, Feb 10 2024

Keywords

Comments

For definition and links see A370093.

Examples

			0.71312380050989...
		

Crossrefs

A370113 Decimal expansion of Lichtman constant f(N*(4)).

Original entry on oeis.org

6, 5, 2, 8, 1, 2, 9, 0, 9, 8, 5, 5, 4, 0, 6, 2, 5, 6, 9, 8, 8, 3, 5, 4, 2, 4, 5, 6, 5, 3, 1, 8, 0, 9, 6, 0, 2, 0, 4, 5, 6, 9, 9, 7, 4, 9, 1, 4, 4, 5, 6, 8, 0, 5, 0, 4, 6, 9, 6, 6, 7, 7, 4, 7, 0, 3, 8, 9, 9, 9, 7, 9, 1, 5, 1, 9, 5, 9, 1, 4, 9, 4, 4, 4, 5, 9, 8, 3, 0, 2, 5, 0, 6, 0, 2, 3, 8, 6, 7, 9, 0, 5, 0, 2, 9, 1
Offset: 0

Views

Author

Artur Jasinski, Feb 10 2024

Keywords

Comments

For definition and links see A370093.

Examples

			0.6528129098554...
		

Crossrefs

A372765 Decimal expansion of Lichtman constant f(N(2)).

Original entry on oeis.org

1, 1, 4, 4, 8, 1, 6, 5, 7, 3, 4, 0, 5, 9, 1, 7, 9, 9, 1, 5, 2, 4, 4, 5, 0, 1, 7, 3, 8, 9, 3, 3, 4, 1, 0, 7, 9, 1, 3, 1, 3, 0, 4, 9, 7, 4, 0, 1, 7, 4, 3, 6, 7, 3, 9, 1, 1, 9, 8, 9, 7, 6, 7, 3, 1, 7, 3, 0, 4, 9, 8, 7, 5, 5, 6, 8, 3, 2, 1, 1, 7, 6, 4, 9, 1, 8, 8, 2, 0, 6, 7, 5, 1, 7, 2, 3, 8, 7, 8, 8, 0, 7, 1, 1, 6
Offset: 1

Views

Author

Artur Jasinski, May 14 2024

Keywords

Comments

Definition:
f(N(k)) = Sum_{n>1 and (big) Omega(n)=k} 1/(n*log(n)), where (big) Omega is number of prime divisors of n counted with multiplicity see A001222.
f(N(k)) = Integral_{s>=1} P_k(s), where P_k(s) = Sum_{n>1 and (big) Omega(n)=k} 1/n^s.
Lichtman constant f(N(1)) see A137245.
Lichtman constant f(N(2)) this sequence.
Lichtman constant f(N(3)) see A372827.
Lichtman constant f(N(4)) see A372828.
Minimal value of f(N(k)) occurs for k=6 f(N(6)) = 0.9887534530145...
For k>=6, 1 > f(N(k+1)) > f(N(k)).
When k -> oo then f(N(k)) -> 1.
Value computed and communicated by Bill Allombert.

Examples

			1.1448165734059179915...
		

Crossrefs

Programs

  • PARI
    pz(x)= sum(n=1, max(2, bitprecision(x)/x), my(a=moebius(n)); if(a!=0, a*log(zeta(n*x))/n));
    Lichtman(n)=intnum(s=1, [oo, log(2)], exp(sum(i=1, n, pz(i*s)*x^i/i)+O(x^(n+1)))-1)
    Lichtman(20)
    \\ Bill Allombert, May 14 2024 [via Artur Jasinski]

A372827 Decimal expansion of Lichtman constant f(N(3)).

Original entry on oeis.org

1, 0, 3, 0, 8, 3, 5, 1, 0, 1, 7, 9, 3, 2, 1, 7, 5, 7, 1, 9, 5, 5, 6, 8, 8, 8, 9, 9, 7, 9, 6, 1, 0, 0, 3, 9, 0, 9, 2, 5, 9, 3, 6, 0, 7, 2, 9, 9, 1, 1, 5, 6, 6, 5, 9, 5, 3, 8, 0, 0, 5, 4, 6, 1, 0, 8, 6, 3, 8, 8, 4, 8, 1, 5, 4, 4, 2, 9, 7, 4, 9, 6, 8, 6, 8, 7, 9, 1, 6, 5, 9, 7, 5, 7, 5, 4, 7, 7, 6, 0, 2, 2, 3, 1, 4
Offset: 1

Views

Author

Artur Jasinski, May 14 2024

Keywords

Comments

For definition and links see A372765.

Examples

			1.0308351017932175719...
		

Crossrefs

A372828 Decimal expansion of Lichtman constant f(N(4)).

Original entry on oeis.org

9, 9, 7, 3, 4, 2, 1, 4, 8, 5, 9, 5, 2, 5, 2, 3, 5, 9, 7, 7, 7, 5, 9, 3, 5, 9, 9, 5, 4, 8, 7, 8, 1, 9, 7, 9, 2, 7, 1, 1, 9, 2, 4, 1, 3, 5, 5, 3, 8, 2, 2, 1, 7, 2, 7, 1, 8, 8, 9, 8, 2, 9, 2, 4, 7, 7, 0, 8, 4, 2, 3, 4, 7, 6, 7, 5, 2, 7, 6, 7, 8, 4, 6, 0, 4, 4, 9, 8, 1, 5, 1, 7, 6, 9, 9, 0, 6, 1, 6, 6, 5, 8, 7, 7, 3
Offset: 0

Views

Author

Artur Jasinski, May 14 2024

Keywords

Comments

For definition and links see A372765.

Examples

			0.997342148595252359...
		

Crossrefs

A240953 Constant in Sathe's theorem: Product_{p prime} (1 - 1/p)*e^(1/p).

Original entry on oeis.org

7, 2, 9, 2, 6, 4, 7, 4, 4, 2, 5, 7, 1, 1, 9, 0, 1, 8, 8, 5, 3, 6, 1, 5, 3, 1, 6, 9, 3, 1, 3, 0, 0, 1, 2, 8, 1, 7, 7, 5, 4, 5, 9, 7, 1, 0, 3, 7, 8, 4, 3, 6, 1, 8, 6, 7, 4, 7, 6, 6, 9, 1, 2, 8, 7, 6, 5, 5, 6, 4, 6, 6, 1, 2, 5, 6, 6, 7, 2, 2, 9, 4, 7, 4, 2, 8, 3, 5, 9, 1, 5, 6, 4, 2, 8, 0, 1, 6, 9, 7, 4, 7, 2
Offset: 0

Views

Author

Keywords

Comments

Sathe proved that pi_k(x), the count of numbers <= x with exactly k prime factors, satisfies pi_k(x) ~ f(k/log log x) * x/log x * (log log x)^(k-1)/(k-1)! where f(x) = c/gamma(x+1) * Product_{p prime} 1 + x*exp(-x/p)/p and c is this constant. This holds uniformly for k < (2 - eps)log log x for any fixed eps > 0. - Charles R Greathouse IV, Aug 02 2016

Examples

			0.72926474425711901885361531693130012817754597103784361867476691287655...
		

References

  • L. G. Sathe, On a problem of Hardy on the distribution of integers having a given number of prime factors. I., J. Indian Math. Soc. (N.S.) 17 (1953), pp. 63-82.
  • L. G. Sathe, On a problem of Hardy on the distribution of integers having a given number of prime factors. II., J. Indian Math. Soc. (N.S.) 17 (1953), pp. 83-141.
  • Atle Selberg, Note on a paper by L. G. Sathe, J. Indian Math. Soc. (N.S.) 18 (1954), pp. 83-87.

Crossrefs

Programs

  • Mathematica
    digits = 103; S = E^-NSum[PrimeZetaP[ n]/n, {n, 2, Infinity}, WorkingPrecision -> digits + 10, NSumTerms -> 3*digits]; RealDigits[S, 10, digits] // First (* Jean-François Alcover, Sep 11 2015 *)
  • PARI
    /* Helper functions and a function f to compute a k-th order approximation of the constant using the primes up to lim. */
    eps(x=1.)=my(p=if(x,precision(x),default(realprecision))); precision(2. >> (32 * ceil(p * 38539962 / 371253907)), 9);
    primezeta(s)=my(lm=s*log(2));lm=lambertw(lm/eps())\lm;sum(k=1,lm,moebius(k)/k*log(abs(zeta(k*s))));
    f(lim,k)=my(t=0.);forprime(p=2,lim,t+=log(1-1/p)+sum(i=1,k,1/i/p^i));exp(t-sum(i=2,k,primezeta(i)/i));
    f(1e8, 9)

Formula

Equals e^A143524. - Jon Maiga, Nov 17 2018

Extensions

More digits from Jean-François Alcover, Sep 11 2015

A352081 Numbers of the form k*p^k, where k>1 and p is a prime.

Original entry on oeis.org

8, 18, 24, 50, 64, 81, 98, 160, 242, 324, 338, 375, 384, 578, 722, 896, 1029, 1058, 1215, 1682, 1922, 2048, 2500, 2738, 3362, 3698, 3993, 4374, 4418, 4608, 5618, 6591, 6962, 7442, 8978, 9604, 10082, 10240, 10658, 12482, 13778, 14739, 15309, 15625, 15842, 18818
Offset: 1

Views

Author

Amiram Eldar, Apr 16 2022

Keywords

Comments

Each term in this sequence has a single presentation in the form k*p^k.

Examples

			8 is a term since 8 = 2*2^2.
18 is a term since 18 = 2*3^2.
24 is a term since 24 = 3*2^3.
		

Crossrefs

Subsequences: A036289 \ {0, 2}, A036290 \ {0, 3}, A036291 \ {0, 5}, A036293 \ {0, 7}, A073113 \ {2}, A079704, A100042, A104126.

Programs

  • Mathematica
    addP[p_, n_] := Module[{k = 2, s = {}, m}, While[(m = k*p^k) <= n, k++; AppendTo[s, m]]; s]; seq[max_] := Module[{m = Floor[Sqrt[max/2]], s = {}, ps}, ps = Select[Range[m], PrimeQ]; Do[s = Join[s, addP[p, max]], {p, ps}]; Sort[s]]; seq[2*10^4]

Formula

Sum_{n>=1} 1/a(n) = -A143524 = gamma - B_1, where gamma is Euler's constant (A001620), and B_1 is Mertens's constant (A077761).

A154943 Decimal expansion of the negated value of the sum_q [log(1-1/q)+1/q] over the semiprimes q.

Original entry on oeis.org

0, 7, 9, 8, 4, 8, 0, 4, 0, 3, 0, 6, 2, 3, 2, 6, 9, 1, 8, 9, 7, 4, 0, 2, 2, 5, 4, 7, 0, 5, 1, 3, 6, 6, 8, 2, 2, 7, 2, 3, 1, 1, 9, 0, 2, 0, 8, 4, 9, 0, 8, 6, 0, 3
Offset: 0

Views

Author

R. J. Mathar, Jan 17 2009

Keywords

Comments

The semiprime analog of A143524. Taylor expansion of the logarithm shows that the value is sum_{s=2,3,..,infinity} P_2(s)/s, where P_2(s) are the semiprime zeta functions in Table 3 of the preprint arXiv:0803.0900. P_2(2)=A117543 and P_2(3)=0.023806..., P_2(4)=0.004994... etc.

Examples

			Equals 0.079848040306232691897402254...
		

Formula

Equals the negative of Sum_{i>=1} ( log(1-1/A001358(i)) +1/A001358(i)).
Showing 1-9 of 9 results.