A143548 Irregular triangle of numbers k < p^2 such that p^2 divides k^(p-1)-1, with p=prime(n).
1, 1, 8, 1, 7, 18, 24, 1, 18, 19, 30, 31, 48, 1, 3, 9, 27, 40, 81, 94, 112, 118, 120, 1, 19, 22, 23, 70, 80, 89, 99, 146, 147, 150, 168, 1, 38, 40, 65, 75, 110, 131, 134, 155, 158, 179, 214, 224, 249, 251, 288, 1, 28, 54, 62, 68, 69, 99, 116, 127, 234, 245, 262, 292, 293, 299, 307, 333, 360
Offset: 1
Examples
(2) 1, (3) 1, 8, (5) 1, 7, 18, 24, (7) 1, 18, 19, 30, 31, 48, (11) 1, 3, 9, 27, 40, 81, 94, 112, 118, 120, (13) 1, 19, 22, 23, 70, 80, 89, 99, 146, 147, 150, 168, (17) 1, 38, 40, 65, 75, 110, 131, 134, 155, 158, 179, 214, 224, 249, 251, 288,
References
- R. Crandall and C. Pomerance, Prime Numbers: A Computational Perspective, Springer, NY, 2005
Links
- T. D. Noe, Rows n=1..50 of triangle, flattened
Crossrefs
Programs
-
Maple
f:= proc(n) local p,j,x; p:= ithprime(n); x:= numtheory:-primroot(p); op(sort([seq(x^(i*p) mod p^2, i=0..p-2)])) end proc: map(f, [$1..20]); # Robert Israel, Sep 27 2016
-
Mathematica
Flatten[Table[p=Prime[n]; Select[Range[p^2], PowerMod[ #,p-1,p^2]==1&], {n,50}]] (* T. D. Noe, Aug 24 2008 *) Flatten[Table[p=Prime[n]; r=PrimitiveRoot[p]; b=PowerMod[r,p,p^2]; Sort[NestList[Mod[b*#,p^2]&,1,p-2]], {n,50}]] (* Faster version from T. D. Noe, Aug 26 2008 *)
Comments