A319924
a(n) = A143565(2n,n) for n > 0, a(0) = 1.
Original entry on oeis.org
1, 3, 13, 61, 281, 1261, 5545, 24025, 102961, 437581, 1847561, 7759753, 32449873, 135207801, 561632401, 2326762801, 9617286241, 39671305741, 163352435401, 671560012201, 2756930576401, 11303415363241, 46290177201841, 189368906734801, 773942488394401
Offset: 0
-
a:= proc(n) option remember; `if`(n<2, 2*n+1,
((15*n^2-29*n+10)*a(n-1)-(6*n-2)*(2*n-3)*
a(n-2))/((n-1)*(3*n-4)))
end:
seq(a(n), n=0..30);
A143567
E.g.f. satisfies A(x) = exp(x*A(x^3/3!)).
Original entry on oeis.org
1, 1, 1, 1, 5, 21, 61, 211, 1401, 8065, 37241, 240021, 1997821, 14657501, 105629525, 958412911, 9201199281, 86311594881, 871038486001, 9432024424585, 106531641929781, 1271523772132741, 15583607760968941, 194983864950339851
Offset: 0
-
A:= proc(n) option remember; if n<=0 then 1 else unapply (convert (series (exp (x*A(n-3)(x^3/6)), x,n+1), polynom),x) fi end: a:= n-> coeff (A(n)(x), x,n)*n!: seq(a(n), n=0..29);
-
A[n_] := A[n] = If[n <= 0, 1&, Function[Normal[Series[Exp[y*A[n-2][y^3/3!]], {y, 0, n+1}] /. y -> #]]]; a[n_] := Coefficient [A[n][x], x, n]*n!; Table[a[n], {n, 0, 29}] (* Jean-François Alcover, Feb 13 2014, after Maple *)
A143568
E.g.f. satisfies A(x) = exp(x*A(x^4/4!)).
Original entry on oeis.org
1, 1, 1, 1, 1, 6, 31, 106, 281, 946, 7561, 54286, 281161, 1207636, 7997991, 81996916, 701522641, 4580581916, 29742355441, 306369616636, 3632198902321, 34977922146721, 282526761829621, 2720464688299821, 36188717552636881, 464906756446099276, 4985291127563074901
Offset: 0
-
A:= proc(n) option remember; if n<=0 then 1 else
unapply(convert(series(exp(x*A(n-4)(x^4/24)), x, n+1), polynom), x) fi
end:
a:= n-> coeff(A(n)(x), x,n)*n!:
seq(a(n), n=0..30);
-
A[n_] := A[n] = If[n <= 0, 1&, Function[Normal[Series[Exp[y*A[n-2][y^4/4!]], {y, 0, n+1}] /. y -> #]]]; a[n_] := Coefficient[A[n][x], x, n]*n!; Table[a[n], {n, 0, 30}] (* Jean-François Alcover, Feb 13 2014, after Maple *)
A143566
E.g.f. satisfies A(x) = exp(x*A(x^2/2!)).
Original entry on oeis.org
1, 1, 1, 4, 13, 46, 241, 1471, 9409, 67348, 564841, 4771801, 45459481, 463867834, 5060656693, 58878140686, 730612429681, 9556314730456, 131627520296929, 1912237000523623, 29032781640572881, 462811831018070206, 7687624300327129621, 133275225843052767244
Offset: 0
-
A:= proc(n) option remember; if n<=0 then 1 else unapply(convert(
series(exp(x*A(n-2)(x^2/2)), x,n+1), polynom),x) fi
end:
a:= n-> coeff(A(n)(x), x,n)*n!:
seq(a(n), n=0..28);
-
A[n_] := A[n] = If[n <= 0, 1&, Function[Normal[Series[Exp[y*A[n-2][y^2/2]], {y, 0, n+1}] /. y -> #]]]; a[n_] := Coefficient[A[n][x], x, n]*n!; Table[a[n], {n, 0, 28}] (* Jean-François Alcover, Feb 13 2014, after Maple *)
A143569
E.g.f. satisfies A(x) = exp(x*A(x^5/5!)).
Original entry on oeis.org
1, 1, 1, 1, 1, 1, 7, 43, 169, 505, 1261, 4159, 38809, 334621, 2036035, 9489481, 38390353, 257371297, 3131783929, 32230292725, 246760346161, 1493969858641, 9196517088991, 101815213853431, 1450104259874425, 16645720979718601, 147298665834676357
Offset: 0
-
A:= proc(n) option remember; if n<=0 then 1 else unapply (convert (series (exp (x*A(n-5)(x^5/120)), x,n+1), polynom),x) fi end: a:= n-> coeff (A(n)(x), x,n)*n!: seq(a(n), n=0..31);
-
A[n_] := A[n] = If[n <= 0, 1&, Function[Normal[Series[Exp[y*A[n-2][y^5/5!]], {y, 0, n+1}] /. y -> #]]]; a[n_] := Coefficient[A[n][x], x, n]*n!; Table[a[n], {n, 0, 31}] (* Jean-François Alcover, Feb 13 2014, after Maple *)
A143570
E.g.f. satisfies A(x) = exp(x*A(x^6/6!)).
Original entry on oeis.org
1, 1, 1, 1, 1, 1, 1, 8, 57, 253, 841, 2311, 5545, 18019, 192193, 1936936, 13533521, 71607537, 308979217, 1195354525, 8070684721, 113661781381, 1368278263969, 12100291273456, 83294670263113, 474179436692501, 2787857745272601, 32561274444909211
Offset: 0
-
A:= proc(n) option remember; if n<=0 then 1 else unapply (convert (series (exp (x*A(n-6)(x^6/720)), x,n+1), polynom),x) fi end: a:= n-> coeff (A(n)(x), x,n)*n!: seq(a(n), n=0..33);
-
A[n_] := A[n] = If[n <= 0, 1&, Function[Normal[Series[Exp[y*A[n-2][y^6/6!]], {y, 0, n+1}] /. y -> #]]]; a[n_] := Coefficient[A[n][x], x, n]*n!; Table[a[n], {n, 0, 33}] (* Jean-François Alcover, Feb 13 2014, after Maple *)
A143571
E.g.f. satisfies A(x) = exp(x*A(x^7/7!)).
Original entry on oeis.org
1, 1, 1, 1, 1, 1, 1, 1, 9, 73, 361, 1321, 3961, 10297, 24025, 77221, 926641, 10696401, 84365425, 499445857, 2395445521, 9778915441, 36584246161, 248210675593, 3971313933049, 54773770095001, 549282704399001, 4258482133019401, 27025791550397641
Offset: 0
-
A:= proc(n) option remember; if n<=0 then 1 else unapply(convert(
series(exp(x*A(n-7)(x^7/5040)), x, n+1), polynom), x) fi
end:
a:= n-> coeff(A(n)(x), x,n)*n!:
seq(a(n), n=0..34);
-
A[n_] := A[n] = If[n <= 0, 1&, Function[Normal[Series[Exp[y*A[n-2][y^7/7!]], {y, 0, n+1}] /. y -> #]]]; a[n_] := Coefficient[A[n][x], x, n]*n!; Table[a[n], {n, 0, 34}] (* Jean-François Alcover, Feb 13 2014, after Maple *)
A143572
E.g.f. satisfies A(x) = exp(x*A(x^8/8!)).
Original entry on oeis.org
1, 1, 1, 1, 1, 1, 1, 1, 1, 10, 91, 496, 1981, 6436, 18019, 45046, 102961, 328186, 4375801, 56951038, 500352841, 3276290746, 17289324361, 77309034166, 302908144177, 1104328093276, 7519851360451, 134741602227376, 2095457847783301, 23492070829121896
Offset: 0
-
A:= proc(n) option remember; if n<=0 then 1 else unapply (convert (series (exp (x*A(n-8)(x^8/40320)), x,n+1), polynom),x) fi end: a:= n-> coeff (A(n)(x), x,n)*n!: seq(a(n), n=0..35);
-
A[n_] := A[n] = If[n <= 0, 1&, Function[Normal[Series[Exp[y*A[n-2][y^8/8!]], {y, 0, n+1}] /. y -> #]]]; a[n_] := Coefficient[A[n][x], x, n]*n!; Table[a[n], {n, 0, 35}] (* Jean-François Alcover, Feb 13 2014, after Maple *)
A143573
E.g.f. satisfies A(x) = exp(x*A(x^9/9!)).
Original entry on oeis.org
1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 11, 111, 661, 2861, 10011, 30031, 80081, 194481, 437581, 1385671, 20323161, 294517861, 2851708861, 20461620411, 117812647921, 572637720601, 2430703053351, 9228958338601, 32965820988101, 225123959060001, 4466029537119151
Offset: 0
-
A:= proc(n) option remember; if n<=0 then 1 else unapply (convert (series (exp (x*A(n-9)(x^9/362880)), x,n+1), polynom),x) fi end: a:= n-> coeff (A(n)(x), x,n)*n!: seq(a(n), n=0..36);
-
A[n_] := A[n] = If[n <= 0, 1&, Function[Normal[Series[Exp[y*A[n-2][y^9/9!]], {y, 0, n+1}] /. y -> #]]]; a[n_] := Coefficient[A[n][x], x, n]*n!; Table[a[n], {n, 0, 36}] (* Jean-François Alcover, Feb 13 2014, after Maple *)
Showing 1-9 of 9 results.