cp's OEIS Frontend

This is a front-end for the Online Encyclopedia of Integer Sequences, made by Christian Perfect. The idea is to provide OEIS entries in non-ancient HTML, and then to think about how they're presented visually. The source code is on GitHub.

A143566 E.g.f. satisfies A(x) = exp(x*A(x^2/2!)).

Original entry on oeis.org

1, 1, 1, 4, 13, 46, 241, 1471, 9409, 67348, 564841, 4771801, 45459481, 463867834, 5060656693, 58878140686, 730612429681, 9556314730456, 131627520296929, 1912237000523623, 29032781640572881, 462811831018070206, 7687624300327129621, 133275225843052767244
Offset: 0

Views

Author

Alois P. Heinz, Aug 24 2008

Keywords

Crossrefs

2nd column of A143565.
Cf. A138292.

Programs

  • Maple
    A:= proc(n) option remember; if n<=0 then 1 else unapply(convert(
           series(exp(x*A(n-2)(x^2/2)), x,n+1), polynom),x) fi
        end:
    a:= n-> coeff(A(n)(x), x,n)*n!:
    seq(a(n), n=0..28);
  • Mathematica
    A[n_] := A[n] = If[n <= 0, 1&, Function[Normal[Series[Exp[y*A[n-2][y^2/2]], {y, 0, n+1}] /. y -> #]]]; a[n_] := Coefficient[A[n][x], x, n]*n!; Table[a[n], {n, 0, 28}] (* Jean-François Alcover, Feb 13 2014, after Maple *)

Formula

a(0) = 1; a(n) = (n-1)! * Sum_{k=0..floor((n-1)/2)} (2*k+1) * a(k) * a(n-1-2*k) / (2^k * k! * (n-1-2*k)!). - Seiichi Manyama, Nov 28 2023