cp's OEIS Frontend

This is a front-end for the Online Encyclopedia of Integer Sequences, made by Christian Perfect. The idea is to provide OEIS entries in non-ancient HTML, and then to think about how they're presented visually. The source code is on GitHub.

A143568 E.g.f. satisfies A(x) = exp(x*A(x^4/4!)).

Original entry on oeis.org

1, 1, 1, 1, 1, 6, 31, 106, 281, 946, 7561, 54286, 281161, 1207636, 7997991, 81996916, 701522641, 4580581916, 29742355441, 306369616636, 3632198902321, 34977922146721, 282526761829621, 2720464688299821, 36188717552636881, 464906756446099276, 4985291127563074901
Offset: 0

Views

Author

Alois P. Heinz, Aug 24 2008

Keywords

Crossrefs

4th column of A143565.
Cf. A367720.

Programs

  • Maple
    A:= proc(n) option remember; if n<=0 then 1 else
          unapply(convert(series(exp(x*A(n-4)(x^4/24)), x, n+1), polynom), x) fi
        end:
    a:= n-> coeff(A(n)(x), x,n)*n!:
    seq(a(n), n=0..30);
  • Mathematica
    A[n_] := A[n] = If[n <= 0, 1&, Function[Normal[Series[Exp[y*A[n-2][y^4/4!]], {y, 0, n+1}] /. y -> #]]]; a[n_] := Coefficient[A[n][x], x, n]*n!; Table[a[n], {n, 0, 30}] (* Jean-François Alcover, Feb 13 2014, after Maple *)

Formula

a(0) = 1; a(n) = (n-1)! * Sum_{k=0..floor((n-1)/4)} (4*k+1) * a(k) * a(n-1-4*k) / (24^k * k! * (n-1-4*k)!). - Seiichi Manyama, Nov 28 2023