cp's OEIS Frontend

This is a front-end for the Online Encyclopedia of Integer Sequences, made by Christian Perfect. The idea is to provide OEIS entries in non-ancient HTML, and then to think about how they're presented visually. The source code is on GitHub.

A143573 E.g.f. satisfies A(x) = exp(x*A(x^9/9!)).

Original entry on oeis.org

1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 11, 111, 661, 2861, 10011, 30031, 80081, 194481, 437581, 1385671, 20323161, 294517861, 2851708861, 20461620411, 117812647921, 572637720601, 2430703053351, 9228958338601, 32965820988101, 225123959060001, 4466029537119151
Offset: 0

Views

Author

Alois P. Heinz, Aug 24 2008

Keywords

Crossrefs

9th column of A143565.

Programs

  • Maple
    A:= proc(n) option remember; if n<=0 then 1 else unapply (convert (series (exp (x*A(n-9)(x^9/362880)), x,n+1), polynom),x) fi end: a:= n-> coeff (A(n)(x), x,n)*n!: seq(a(n), n=0..36);
  • Mathematica
    A[n_] := A[n] = If[n <= 0, 1&, Function[Normal[Series[Exp[y*A[n-2][y^9/9!]], {y, 0, n+1}] /. y -> #]]]; a[n_] := Coefficient[A[n][x], x, n]*n!; Table[a[n], {n, 0, 36}] (* Jean-François Alcover, Feb 13 2014, after Maple *)

Formula

a(0) = 1; a(n) = (n-1)! * Sum_{k=0..floor((n-1)/9)} (9*k+1) * a(k) * a(n-1-9*k) / (362880^k * k! * (n-1-9*k)!). - Seiichi Manyama, Nov 29 2023