A143574 Sum of all distinct squares occurring when partitioning n into two squares.
0, 1, 1, 0, 4, 5, 0, 0, 4, 9, 10, 0, 0, 13, 0, 0, 16, 17, 9, 0, 20, 0, 0, 0, 0, 50, 26, 0, 0, 29, 0, 0, 16, 0, 34, 0, 36, 37, 0, 0, 40, 41, 0, 0, 0, 45, 0, 0, 0, 49, 75, 0, 52, 53, 0, 0, 0, 0, 58, 0, 0, 61, 0, 0, 64, 130, 0, 0, 68, 0, 0, 0, 36, 73, 74, 0, 0, 0, 0, 0, 80, 81, 82, 0, 0, 170, 0, 0, 0
Offset: 0
Keywords
Examples
A000161(25)=#{5^2+0^2,4^2+3^2}=2: a(25)=25+0+16+9=50; A000161(26)=#{5^2+1^2}=1: a(16)=25+1=26; A000161(49)=#{7^2+0^2}=1: a(49)=49+0=49; A000161(50)=#{7^2+1^2,5^2+5^2}=2: a(50)=49+1+25=75; A000161(2600)=#{50^2+10^2,46^2+22^2,38^2+34^2}=3: a(2600)=2500+100+2116+484+1444+1156=7800; A000161(2601)=#{51^2+0^2,45^2+24^2}=2: a(2601)=2601+0+12025+576=5202; A000161(2602)=#{51^2+1^2}=1: a(2602)=2601+1=2602.
Links
- Reinhard Zumkeller, Table of n, a(n) for n = 0..10000
Programs
-
PARI
a(n) = sum(k=1, n, if (issquare(k) && issquare(n-k), k)); \\ Michel Marcus, May 16 2023
-
Python
from sympy import divisors from sympy.solvers.diophantine.diophantine import cornacchia def A143574(n): c = 0 for d in divisors(n): if (k:=d**2)>n: break q, r = divmod(n,k) if not r: c += sum(k*(a[0]**2+(a[1]**2 if a[0]!=a[1] else 0)) for a in cornacchia(1,1,q) or []) return c # Chai Wah Wu, May 15 2023
Comments