cp's OEIS Frontend

This is a front-end for the Online Encyclopedia of Integer Sequences, made by Christian Perfect. The idea is to provide OEIS entries in non-ancient HTML, and then to think about how they're presented visually. The source code is on GitHub.

Showing 1-2 of 2 results.

A142591 Composite terms in A143578.

Original entry on oeis.org

15, 35, 95, 119, 143, 209, 287, 319, 323, 377, 527, 559, 779, 899, 923, 989, 1007, 1189, 1199, 1343, 1349, 1763, 1919, 2159, 2507, 2759, 2911, 3239, 3599, 3827, 4031, 4607, 5183, 5207, 5249, 5459, 5543, 6439, 6887, 7067, 7279, 7739, 8159, 8639, 9179, 9593
Offset: 1

Views

Author

Leroy Quet, Aug 24 2008

Keywords

Comments

Conjecture: This consists exactly of the semiprimes p*q for which p + q divides p*q + 1. - Mohamed Bouhamida, Aug 17 2009 (Comment edited by N. J. A. Sloane, Sep 01 2019.)

Crossrefs

Cf. A143578.

Programs

  • Maple
    filter:= proc(n) local k,D,j,t;
      D:= select(t -> t^2 <= n, numtheory:-divisors(n));
      j:= max(D);
      t:= j+n/j;
      andmap(k -> (k+n/k) mod t = 0, D);
    end proc:
    count:= 0: S:= NULL:
    for n from 2  while count < 100 do
      if  isprime(n) then next
      elif filter(n) then
        count:= count+1;
        S:= S, n;
      fi
    od:
    S; # Robert Israel, Sep 01 2019
  • Mathematica
    Select[Reap[Module[{n, k}, For[n = 1, n < 10000, n++, k = Max[Select[Divisors[n], # <= Sqrt[n]&]]; If[Length[Union[ Mod[Divisors[n] + n/Divisors[n], k+n/k]]] == 1, Sow[n]]]]][[2, 1]], CompositeQ] (* Jean-François Alcover, Feb 07 2023 *)

Extensions

More terms from M. F. Hasler, Aug 25 2008
a(33)-a(46) from Ray Chandler, Jun 21 2009

A235480 Primes whose base-3 representation is also the base-9 representation of a prime.

Original entry on oeis.org

2, 5, 7, 11, 17, 19, 23, 31, 37, 41, 43, 53, 67, 71, 73, 83, 89, 97, 103, 149, 157, 199, 239, 251, 257, 271, 277, 293, 307, 313, 331, 337, 359, 383, 397, 421, 431, 433, 499, 541, 557, 571, 587, 599, 601, 613, 631, 653, 659, 661, 683, 691, 709, 727, 751, 769, 823, 887, 911, 983, 1009, 1021, 1031, 1049, 1051, 1063, 1129, 1163, 1217
Offset: 1

Views

Author

M. F. Hasler, Jan 12 2014

Keywords

Comments

This sequence is part of a two-dimensional array of sequences, given in the LINK, based on this same idea for any two different bases b, c > 1. Sequence A235265 and A235266 are the most elementary ones in this list. Sequences A089971, A089981 and A090707 through A090721, and sequences A065720 - A065727, follow the same idea with one base equal to 10.
Appears to be a subsequence of A015919, A045344, A052085, A064555 and A143578.

Examples

			5 = 12_3 and 12_9 = 11 are both prime, so 5 is a term.
		

Crossrefs

Cf. A235265, A235473 - A235479, A065720A036952, A065721 - A065727, A089971A020449, A089981, A090707 - A091924, A235394, A235395, A235461 - A235482. See the LINK for further cross-references.

Programs

  • Mathematica
    Select[Prime@ Range@ 500, PrimeQ@ FromDigits[ IntegerDigits[#, 3], 9] &] (* Giovanni Resta, Sep 12 2019 *)
  • PARI
    is(p,b=9,c=3)=isprime(vector(#d=digits(p,c),i,b^(#d-i))*d~)&&isprime(p) \\ Note: Code only valid for b > c.
Showing 1-2 of 2 results.