A143596 Triangle read by rows: T(n,k) is the coefficient of x^k in p(x,n) = ((x + 1)^(2*n) - (x^2 + 1)^n)/(2*x), 0 <= k <= 2*n-1.
1, 2, 2, 2, 3, 6, 10, 6, 3, 4, 12, 28, 32, 28, 12, 4, 5, 20, 60, 100, 126, 100, 60, 20, 5, 6, 30, 110, 240, 396, 452, 396, 240, 110, 30, 6, 7, 42, 182, 490, 1001, 1484, 1716, 1484, 1001, 490, 182, 42, 7, 8, 56, 280, 896, 2184, 3976, 5720, 6400, 5720, 3976, 2184, 896, 280
Offset: 1
Examples
{1}, {2, 2, 2}, {3, 6, 10, 6, 3}, {4, 12, 28, 32, 28, 12, 4}, {5, 20, 60, 100, 126, 100, 60, 20, 5}, {6, 30, 110, 240, 396, 452, 396, 240, 110, 30, 6}, {7, 42, 182, 490, 1001, 1484, 1716, 1484, 1001, 490, 182, 42, 7}, {8, 56, 280, 896, 2184, 3976, 5720, 6400, 5720, 3976, 2184, 896, 280, 56, 8},
Links
- Andrew Howroyd, Table of n, a(n) for n = 1..2500 (first 50 rows)
Crossrefs
Cf. A006516 (row sums).
Programs
-
Mathematica
Clear[p, x, n, m]; p[x_, n_] = ((x + 1)^(2*n) - (x^2 + 1)^n)/(2*x); Table[CoefficientList[FullSimplify[ExpandAll[p[x, n]]], x], {n, 1, 10}]; Flatten[%]
-
PARI
row(n)=Vecrev(((x + 1)^(2*n) - (x^2 + 1)^n)/(2*x)) \\ Andrew Howroyd, Sep 06 2024
Formula
T(n,k) = [x^k] ((x + 1)^(2*n) - (x^2 + 1)^n)/(2*x).
T(n,k) = T(n,2*n-1-k).
G.f.: x/(1 - 2*(1 + y + y^2)*x + (1 + y)^2*(1 + y^2)*x^2). - Andrew Howroyd, Sep 06 2024
Comments