cp's OEIS Frontend

This is a front-end for the Online Encyclopedia of Integer Sequences, made by Christian Perfect. The idea is to provide OEIS entries in non-ancient HTML, and then to think about how they're presented visually. The source code is on GitHub.

A143596 Triangle read by rows: T(n,k) is the coefficient of x^k in p(x,n) = ((x + 1)^(2*n) - (x^2 + 1)^n)/(2*x), 0 <= k <= 2*n-1.

Original entry on oeis.org

1, 2, 2, 2, 3, 6, 10, 6, 3, 4, 12, 28, 32, 28, 12, 4, 5, 20, 60, 100, 126, 100, 60, 20, 5, 6, 30, 110, 240, 396, 452, 396, 240, 110, 30, 6, 7, 42, 182, 490, 1001, 1484, 1716, 1484, 1001, 490, 182, 42, 7, 8, 56, 280, 896, 2184, 3976, 5720, 6400, 5720, 3976, 2184, 896, 280
Offset: 1

Views

Author

Roger L. Bagula and Gary W. Adamson, Oct 25 2008

Keywords

Comments

Row sums are:{1, 6, 28, 120, 496, 2016, 8128, 32640, 130816, 523776}.

Examples

			{1},
{2, 2, 2},
{3, 6, 10, 6, 3},
{4, 12, 28, 32, 28, 12, 4},
{5, 20, 60, 100, 126, 100, 60, 20, 5},
{6, 30, 110, 240, 396, 452, 396, 240, 110, 30, 6},
{7, 42, 182, 490, 1001, 1484, 1716, 1484, 1001, 490, 182, 42, 7},
{8, 56, 280, 896, 2184, 3976, 5720, 6400, 5720, 3976, 2184, 896, 280, 56, 8},
		

Crossrefs

Cf. A006516 (row sums).

Programs

  • Mathematica
    Clear[p, x, n, m]; p[x_, n_] = ((x + 1)^(2*n) - (x^2 + 1)^n)/(2*x); Table[CoefficientList[FullSimplify[ExpandAll[p[x, n]]], x], {n, 1, 10}]; Flatten[%]
  • PARI
    row(n)=Vecrev(((x + 1)^(2*n) - (x^2 + 1)^n)/(2*x)) \\ Andrew Howroyd, Sep 06 2024

Formula

T(n,k) = [x^k] ((x + 1)^(2*n) - (x^2 + 1)^n)/(2*x).
T(n,k) = T(n,2*n-1-k).
G.f.: x/(1 - 2*(1 + y + y^2)*x + (1 + y)^2*(1 + y^2)*x^2). - Andrew Howroyd, Sep 06 2024