cp's OEIS Frontend

This is a front-end for the Online Encyclopedia of Integer Sequences, made by Christian Perfect. The idea is to provide OEIS entries in non-ancient HTML, and then to think about how they're presented visually. The source code is on GitHub.

A143607 Numerators of principal and intermediate convergents to 2^(1/2).

Original entry on oeis.org

1, 3, 4, 7, 10, 17, 24, 41, 58, 99, 140, 239, 338, 577, 816, 1393, 1970, 3363, 4756, 8119, 11482, 19601, 27720, 47321, 66922, 114243, 161564, 275807, 390050, 665857, 941664, 1607521, 2273378, 3880899, 5488420, 9369319, 13250218, 22619537, 31988856, 54608393
Offset: 1

Views

Author

Clark Kimberling, Aug 27 2008

Keywords

Comments

Sequence is essentially A082766 (by omitting two terms A082766(0) and A082766(2)). - L. Edson Jeffery, Apr 04 2011
a(n) = A119016(n+2) for n>=2. - Georg Fischer, Oct 07 2018

Examples

			The principal and intermediate convergents to 2^(1/2) begin with 1/1, 3/2 4/3, 7/5, 10/7, ...
		

References

  • Serge Lang, Introduction to Diophantine Approximations, Addison-Wesley, New York, 1966.

Crossrefs

Cf. A002965 (denominators), A082766, A119016.

Programs

  • GAP
    a:=[1,3,4,7,10];; for n in [6..40] do a[n]:=2*a[n-2]+a[n-4]; od; a; # Muniru A Asiru, Oct 07 2018
  • Maple
    seq(coeff(series(x*(1+x)*(1+2*x+x^3)/(1-2*x^2-x^4),x,n+1), x, n), n = 1 .. 40); # Muniru A Asiru, Oct 07 2018
  • Mathematica
    CoefficientList[Series[(1 + x)*(1 + 2*x + x^3) / (1 - 2*x^2 - x^4), {x, 0, 50}], x] (* or *)
    LinearRecurrence[{0, 2, 0, 1}, {1, 3, 4, 7, 10}, 40] (* Stefano Spezia, Oct 08 2018; signature amended by Georg Fischer, Apr 02 2019 *)
  • PARI
    Vec(x*(1 + x)*(1 + 2*x + x^3) / (1 - 2*x^2 - x^4) + O(x^60)) \\ Colin Barker, Jul 28 2017
    

Formula

From Colin Barker, Jul 28 2017: (Start)
G.f.: x*(1 + x)*(1 + 2*x + x^3) / (1 - 2*x^2 - x^4).
a(n) = 2*a(n-2) + a(n-4) for n>5.
(End)