cp's OEIS Frontend

This is a front-end for the Online Encyclopedia of Integer Sequences, made by Christian Perfect. The idea is to provide OEIS entries in non-ancient HTML, and then to think about how they're presented visually. The source code is on GitHub.

A143610 Numbers of the form p^2 * q^3, where p,q are distinct primes.

Original entry on oeis.org

72, 108, 200, 392, 500, 675, 968, 1125, 1323, 1352, 1372, 2312, 2888, 3087, 3267, 4232, 4563, 5324, 6125, 6728, 7688, 7803, 8575, 8788, 9747, 10952, 11979, 13448, 14283, 14792, 15125, 17672, 19652, 19773, 21125, 22472, 22707, 25947, 27436
Offset: 1

Views

Author

M. F. Hasler, Aug 27 2008

Keywords

Comments

Also: numbers with prime signature {3,2}.
This is a subsequence of A114128. [Hasler]
Every a(n) is an Achilles number (A052486). They are minimal, meaning no proper divisor is an Achilles number. - Antonio Roldán, Dec 27 2011

Examples

			The first three terms of this sequence are 3^2 * 2^3 = 72, 2^2 * 3^3 = 108, 5^2 * 2^3 = 200.
		

Crossrefs

Programs

  • Mathematica
    f[n_] := Sort[Last/@FactorInteger[n]] == {2, 3}; Select[Range[30000], f] (* Vladimir Joseph Stephan Orlovsky, Oct 09 2009 *)
  • PARI
    for(n=1, 10^5, omega(n)==2 || next; vecsort(factor(n)[,2])==[2,3]~ && print1(n","))
    
  • PARI
    list(lim)=my(v=List(),t);forprime(p=2, (lim\4)^(1/3), t=p^3;forprime(q=2, sqrt(lim\t), if(p==q, next);listput(v,t*q^2))); vecsort(Vec(v)) \\ Charles R Greathouse IV, Jul 20 2011
    
  • Python
    from math import isqrt
    from sympy import primepi, primerange, integer_nthroot
    def A143610(n):
        def bisection(f,kmin=0,kmax=1):
            while f(kmax) > kmax: kmax <<= 1
            kmin = kmax >> 1
            while kmax-kmin > 1:
                kmid = kmax+kmin>>1
                if f(kmid) <= kmid:
                    kmax = kmid
                else:
                    kmin = kmid
            return kmax
        def f(x): return n+x-sum(primepi(isqrt(x//p**3)) for p in primerange(integer_nthroot(x,3)[0]+1))+primepi(integer_nthroot(x,5)[0])
        return bisection(f,n,n) # Chai Wah Wu, Feb 21 2025

Formula

Sum_{n>=1} 1/a(n) = P(2)*P(3) - P(5) = A085548 * A085541 - A085965 = 0.043280..., where P is the prime zeta function. - Amiram Eldar, Jul 06 2020