A143624 Decimal expansion of the negated constant cos(1) - sin(1) = -0.3011686789...
3, 0, 1, 1, 6, 8, 6, 7, 8, 9, 3, 9, 7, 5, 6, 7, 8, 9, 2, 5, 1, 5, 6, 5, 7, 1, 4, 1, 8, 7, 3, 2, 2, 3, 9, 5, 8, 9, 0, 2, 5, 2, 6, 4, 0, 1, 8, 0, 4, 4, 8, 8, 3, 8, 0, 0, 2, 6, 5, 4, 4, 5, 4, 6, 1, 0, 8, 1, 0, 0, 0, 9, 6, 1, 6, 7, 6, 7, 9, 0, 4, 4, 3, 0, 6, 8, 7, 8, 8, 7, 4, 5, 5, 8, 6, 9, 6, 0, 6, 5
Offset: 0
Examples
-0.30116867893975678925156571418732239589025264018...
Links
- Eric Weisstein's World of Mathematics, Spherical Bessel Function of the First Kind
Programs
-
Mathematica
RealDigits[Cos[1] - Sin[1], 10, 100][[1]] (* Amiram Eldar, Aug 07 2020 *)
-
PARI
cos(1)-sin(1) \\ Charles R Greathouse IV, Feb 04 2025
Formula
Equals sin(1-Pi/4)*sqrt(2). - Franklin T. Adams-Watters, Jun 27 2014
Equals j_1(1), where j_1(z) is the spherical Bessel function of the first kind. - Stanislav Sykora, Jan 11 2017
From Amiram Eldar, Aug 07 2020: (Start)
Equals -Integral_{x=0..1} x*sin(x) dx.
Equals Sum_{k>=1} (-1)^k/((2*k-1)! * (2*k+1)) = Sum_{k>=1} (-1)^k/A174549(k). (End)
Extensions
Added sign in definition. Offset corrected by R. J. Mathar, Feb 05 2009
Comments