cp's OEIS Frontend

This is a front-end for the Online Encyclopedia of Integer Sequences, made by Christian Perfect. The idea is to provide OEIS entries in non-ancient HTML, and then to think about how they're presented visually. The source code is on GitHub.

Showing 1-10 of 10 results.

A057077 Periodic sequence 1,1,-1,-1; expansion of (1+x)/(1+x^2).

Original entry on oeis.org

1, 1, -1, -1, 1, 1, -1, -1, 1, 1, -1, -1, 1, 1, -1, -1, 1, 1, -1, -1, 1, 1, -1, -1, 1, 1, -1, -1, 1, 1, -1, -1, 1, 1, -1, -1, 1, 1, -1, -1, 1, 1, -1, -1, 1, 1, -1, -1, 1, 1, -1, -1, 1, 1, -1, -1, 1, 1, -1, -1, 1, 1, -1, -1, 1, 1, -1, -1, 1, 1, -1, -1
Offset: 0

Views

Author

Wolfdieter Lang, Aug 04 2000

Keywords

Comments

Abscissa of the image produced after n alternating reflections of (1,1) over the x and y axes respectively. Similarly, the ordinate of the image produced after n alternating reflections of (1,1) over the y and x axes respectively. - Wesley Ivan Hurt, Jul 06 2013

Crossrefs

Programs

Formula

G.f.: (1+x)/(1+x^2).
a(n) = S(n, 0) + S(n-1, 0) = S(2*n, sqrt(2)); S(n, x) := U(n, x/2), Chebyshev polynomials of 2nd kind, A049310. S(n, 0)=A056594.
a(n) = (-1)^binomial(n,2) = (-1)^floor(n/2) = 1/2*((n+2) mod 4 - n mod 4). For fixed r = 0,1,2,..., it appears that (-1)^binomial(n,2^r) gives a periodic sequence of period 2^(r+1), the period consisting of a block of 2^r plus ones followed by a block of 2^r minus ones. See A033999 (r = 0), A143621 (r = 2) and A143622 (r = 3). Define E(k) = sum {n = 0..inf} a(n)*n^k/n! for k = 0,1,2,... . Then E(0) = cos(1) + sin(1), E(1) = cos(1) - sin(1) and E(k) is an integral linear combination of E(0) and E(1) (a Dobinski-type relation). Precisely, E(k) = A121867(k) * E(0) - A121868(k) * E(1). See A143623 and A143624 for the decimal expansions of E(0) and E(1) respectively. For a fixed value of r, similar relations hold between the values of the sums E_r(k) := Sum_{n>=0} (-1)^floor(n/r)*n^k/n!, k = 0,1,2,... . For particular cases see A000587 (r = 1) and A143628 (r = 3). - Peter Bala, Aug 28 2008
Sum_{k>=0} a(k)/(k+1) = Sum_{k>=0} 1/((a(k)*(k+1))) = log(2)/2 + Pi/4. - Jaume Oliver Lafont, Apr 30 2010
a(n) = (-1)^A180969(1,n), where the first index in A180969(.,.) is the row index. - Adriano Caroli, Nov 18 2010
a(n) = (-1)^((2*n+(-1)^n-1)/4) = i^((n-1)*n), with i=sqrt(-1). - Bruno Berselli, Dec 27 2010 - Aug 26 2011
Non-simple continued fraction expansion of (3+sqrt(5))/2 = A104457. - R. J. Mathar, Mar 08 2012
E.g.f.: cos(x)*(1 + tan(x)). - Arkadiusz Wesolowski, Aug 31 2012
From Ricardo Soares Vieira, Oct 15 2019: (Start)
E.g.f.: sin(x) + cos(x) = sqrt(2)*sin(x + Pi/4).
a(n) = sqrt(2)*(d^n/dx^n) sin(x)|_x=Pi/4, i.e., a(n) equals sqrt(2) times the n-th derivative of sin(x) evaluated at x=Pi/4. (End)
a(n) = 4*floor(n/4) - 2*floor(n/2) + 1. - Ridouane Oudra, Mar 23 2024

A121867 Let A(0) = 1, B(0) = 0; A(n+1) = Sum_{k=0..n} binomial(n,k)*B(k), B(n+1) = Sum_{k=0..n} -binomial(n,k)*A(k); entry gives A sequence (cf. A121868).

Original entry on oeis.org

1, 0, -1, -3, -6, -5, 33, 266, 1309, 4905, 11516, -22935, -556875, -4932512, -32889885, -174282151, -612400262, 907955295, 45283256165, 573855673458, 5397236838345, 41604258561397, 250231901787780, 756793798761989, -8425656230853383, -213091420659985440, -2990113204010882473
Offset: 0

Views

Author

N. J. A. Sloane, Sep 05 2006

Keywords

Comments

Stirling transform of A056594.

Examples

			From _Peter Bala_, Aug 28 2008: (Start)
E_2(k) as linear combination of E_2(i), i = 0..1.
============================
..E_2(k)..|...E_2(0)..E_2(1)
============================
..E_2(2)..|....-1.......1...
..E_2(3)..|....-3.......0...
..E_2(4)..|....-6......-5...
..E_2(5)..|....-5.....-23...
..E_2(6)..|....33.....-74...
..E_2(7)..|...266....-161...
..E_2(8)..|..1309......57...
..E_2(9)..|..4905....3466...
...
(End)
		

Crossrefs

Programs

  • GAP
    List([0..30], n-> Sum([0..Int(n/2)], k-> (-1)^k*Stirling2(n,2*k)) ); # G. C. Greubel, Oct 09 2019
  • Magma
    [(&+[(-1)^k*StirlingSecond(n,2*k): k in [0..Floor(n/2)]]): n in [0..30]]; // G. C. Greubel, Oct 09 2019
    
  • Maple
    # Maple code for A024430, A024429, A121867, A121868.
    M:=30; a:=array(0..100); b:=array(0..100); c:=array(0..100); d:=array(0..100); a[0]:=1; b[0]:=0; c[0]:=1; d[0]:=0;
    for n from 1 to M do a[n]:=add(binomial(n-1,k)*b[k], k=0..n-1); b[n]:=add(binomial(n-1,k)*a[k], k=0..n-1); c[n]:=add(binomial(n-1,k)*d[k], k=0..n-1); d[n]:=-add(binomial(n-1,k)*c[k], k=0..n-1); od: ta:=[seq(a[n],n=0..M)]; tb:=[seq(b[n],n=0..M)]; tc:=[seq(c[n],n=0..M)]; td:=[seq(d[n],n=0..M)];
    # Code based on Stirling transform:
    stirtr:= proc(p) proc(n) option remember;
                add(p(k) *Stirling2(n,k), k=0..n) end
             end:
    a:= stirtr(n-> (I^n + (-I)^n)/2):
    seq(a(n), n=0..30);  # Alois P. Heinz, Jan 29 2011
  • Mathematica
    a[n_] := (BellB[n, -I] + BellB[n, I])/2; Table[a[n], {n, 0, 26}] (* Jean-François Alcover, Mar 06 2013, after Alois P. Heinz *)
  • PARI
    a(n) = sum(k=0,n\2, (-1)^k*stirling(n,2*k,2));
    vector(30, n, a(n-1)) \\ G. C. Greubel, Oct 09 2019
    
  • Sage
    [sum((-1)^k*stirling_number2(n,2*k) for k in (0..floor(n/2))) for n in (0..30)] # G. C. Greubel, Oct 09 2019
    

Formula

From Peter Bala, Aug 28 2008: (Start)
This sequence and its companion A121868 are related to the pair of constants cos(1) + sin(1) and cos(1) - sin(1) and may be viewed as generalizations of the Uppuluri-Carpenter numbers (complementary Bell numbers) A000587. Define E_2(k) = Sum_{n >= 0} (-1)^floor(n/2) * n^k/n! for k = 0,1,2,... . Then E_2(0) = cos(1) + sin(1) and E_2(1) = cos(1) - sin(1). It is easy to see that E_2(k+2) = E_2(k+1) - Sum_{i = 0..k} 2^i*binomial(k,i)*E_2(k-i) for k >= 0. Hence E_2(k) is an integral linear combination of E_2(0) and E_2(1) (a Dobinski-type relation). For example, E_2(2) = - E_2(0) + E_2(1), E_2(3) = -3*E_2(0) and E_2(4) = - 6*E_2(0) - 5*E_2(1). More examples are given below.
To find the precise result, show F(k) := Sum_{n >= 0} (-1)^floor((n+1)/2)*n^k/n! satisfies the above recurrence with F(0) = E_2(1) and F(1) = -E_2(0) and then use the identity Sum_{i = 0..k} binomial(k,i)*E_2(i) = -F(k+1) to obtain E_2(k) = A121867(k) * E_2(0) - A121868(k) * E_2(1). For similar results see A143628. The decimal expansions of E_2(0) and E_2(1) are given in A143623 and A143624 respectively. (End)
E.g.f.: A(x) = cos(exp(x)-1).
a(n) = Sum_{k=0..floor(n/2)} stirling2(n,2*k)*(-1)^(k). - Vladimir Kruchinin, Jan 29 2011

A121868 Let A(0) = 1, B(0) = 0; A(n+1) = Sum_{k=0..n} binomial(n,k)*B(k), B(n+1) = Sum_{k=0..n} -binomial(n,k)*A(k); entry gives B sequence (cf. A121867).

Original entry on oeis.org

0, -1, -1, 0, 5, 23, 74, 161, -57, -3466, -27361, -155397, -687688, -1888525, 4974059, 134695952, 1400820897, 11055147275, 70658948426, 327448854237, 223871274083, -19116044475298, -314203665206509, -3562429698724513, -33024521386113840, -250403183401213513
Offset: 0

Views

Author

N. J. A. Sloane, Sep 05 2006

Keywords

Comments

Stirling transform of (I^(n+1)+(-I)^(n+1))/2 = (0,-1,0,1,..) repeated.

Examples

			From _Peter Bala_, Aug 28 2008: (Start)
E_2(k) as a linear combination of E_2(i), i = 0..1.
============================
..E_2(k)..|...E_2(0)..E_2(1)
============================
..E_2(2)..|....-1.......1...
..E_2(3)..|....-3.......0...
..E_2(4)..|....-6......-5...
..E_2(5)..|....-5.....-23...
..E_2(6)..|....33.....-74...
..E_2(7)..|...266....-161...
..E_2(8)..|..1309......57...
..E_2(9)..|..4905....3466...
(End)
		

Crossrefs

Programs

  • GAP
    List([0..30], n-> Sum([0..Int(n/2)], k-> (-1)^(k+1)* Stirling2(n,2*k+1)) ); # G. C. Greubel, Oct 09 2019
  • Magma
    [(&+[(-1)^(k+1)*StirlingSecond(n,2*k+1): k in [0..Floor(n/2)]]): n in [0..30]]; // G. C. Greubel, Oct 09 2019
    
  • Maple
    # Maple code for A024430, A024429, A121867, A121868.
    M:=30; a:=array(0..100); b:=array(0..100); c:=array(0..100); d:=array(0..100); a[0]:=1; b[0]:=0; c[0]:=1; d[0]:=0;
    for n from 1 to M do a[n]:=add(binomial(n-1,k)*b[k], k=0..n-1); b[n]:=add(binomial(n-1,k)*a[k], k=0..n-1); c[n]:=add(binomial(n-1,k)*d[k], k=0..n-1); d[n]:=-add(binomial(n-1,k)*c[k], k=0..n-1); od: ta:=[seq(a[n],n=0..M)]; tb:=[seq(b[n],n=0..M)]; tc:=[seq(c[n],n=0..M)]; td:=[seq(d[n],n=0..M)];
    # Code based on Stirling transform:
    stirtr:= proc(p) proc(n) option remember;
                add(p(k) *Stirling2(n, k), k=0..n) end
             end:
    a:= stirtr(n-> (I^(n+1) + (-I)^(n+1))/2):
    seq(a(n), n=0..30);  # Alois P. Heinz, Jan 29 2011
  • Mathematica
    stirtr[p_] := Module[{f}, f[n_] := f[n] = Sum[p[k]*StirlingS2[n, k], {k, 0, n}]; f]; a = stirtr[(I^(#+1)+(-I)^(#+1))/2&]; Table[a[n], {n, 0, 30}] (* Jean-François Alcover, Mar 11 2014, after Alois P. Heinz *)
    Table[Im[BellB[n, -I]], {n, 0, 25}] (* Vladimir Reshetnikov, Oct 22 2015 *)
  • PARI
    a(n) = sum(k=0,n\2, (-1)^(k+1)*stirling(n,2*k+1,2));
    vector(30, n, a(n-1)) \\ G. C. Greubel, Oct 09 2019
    
  • Sage
    [sum((-1)^(k+1)*stirling_number2(n,2*k+1) for k in (0..floor(n/2))) for n in (0..30)] # G. C. Greubel, Oct 09 2019
    

Formula

From Peter Bala, Aug 28 2008: (Start)
This sequence and its companion A121867 are related to the pair of constants cos(1) + sin(1) and cos(1) - sin(1) and may be viewed as generalizations of the Uppuluri-Carpenter numbers (complementary Bell numbers) A000587.
Define E_2(k) = Sum_{n >= 0} (-1)^floor(n/2) *n^k/n! for k = 0,1,2,... . Then E_2(0) = cos(1) + sin(1) and E_2(1) = cos(1) - sin(1). Furthermore, E_2(k) is an integral linear combination of E_2(0) and E_2(1) (a Dobinski-type relation). For example, E_2(2) = - E_2(0) + E_2(1), E_2(3) = -3*E_2(0) and E_2(4) = - 6*E_2(0) - 5*E_2(1). More examples are given below. The precise result is E_2(k) = A121867(k) * E_2(0) - A121868(k) * E_2(1).
For similar results see A143628. The decimal expansions of E_2(0) and E_2(1) are given in A143623 and A143624 respectively. (End)
From Vladimir Kruchinin, Jan 26 2011: (Start)
E.g.f.: A(x) = -sin(exp(x)-1).
a(n) = Sum_{k = 0..floor(n/2)} Stirling2(n,2*k+1)*(-1)^(k+1). (End)

A143623 Decimal expansion of the constant cos(1) + sin(1).

Original entry on oeis.org

1, 3, 8, 1, 7, 7, 3, 2, 9, 0, 6, 7, 6, 0, 3, 6, 2, 2, 4, 0, 5, 3, 4, 3, 8, 9, 2, 9, 0, 7, 3, 2, 7, 5, 6, 0, 3, 3, 5, 4, 8, 7, 3, 4, 8, 1, 4, 1, 6, 2, 9, 3, 2, 9, 3, 3, 4, 2, 8, 4, 8, 9, 6, 5, 3, 7, 3, 0, 1, 0, 7, 9, 9, 1, 6, 5, 7, 1, 1, 4, 3, 3, 4, 6, 6, 5, 9, 1, 5, 9, 9, 6, 3, 0, 2, 3, 5, 7, 8, 5, 1
Offset: 1

Views

Author

Peter Bala, Aug 30 2008

Keywords

Comments

cos(1) + sin(1) = Sum_{n >= 0} (-1)^floor(n/2)/n! = 1 + 1/1! - 1/2! - 1/3! + 1/4! + 1/5! - 1/6! - 1/7! + + - - ... .
Define E_2(k) = Sum_{n >= 0} (-1)^floor(n/2)*n^k/n! for k = 0, 1, 2, ... . Then E_2(0) = cos(1) + sin(1) and E_2(1) = cos(1) - sin(1).
Furthermore, E_2(k) is an integral linear combination of E_2(0) and E_2(1) (a Dobinski-type relation). For example, E_2(2) = E_2(1) - E_2(0), E_2(3) = -3*E_2(0) and E_2(4) = -5*E_2(1) - 6*E_2(0). The precise result is E_2(k) = A121867(k) * E_2(0) - A121868(k) * E_2(1).
The decimal expansion of the constant cos(1) - sin(1) = E_2(1) is recorded in A143624. Compare with A143625.

Examples

			1.38177329067603622405 ... .
		

Crossrefs

Programs

Formula

Equals sin(1+Pi/4)*sqrt(2). - Franklin T. Adams-Watters, Jun 27 2014

Extensions

Offset corrected by R. J. Mathar, Feb 05 2009

A143625 Decimal expansion of the constant E_3(0) := Sum_{n >= 0} (-1)^floor(n/3)/n! = 1 + 1/1! + 1/2! - 1/3! - 1/4! - 1/5! + + + - - - ... .

Original entry on oeis.org

2, 2, 8, 4, 9, 4, 2, 3, 8, 2, 4, 0, 9, 6, 3, 5, 2, 0, 8, 9, 9, 9, 0, 5, 0, 0, 1, 9, 2, 6, 3, 0, 8, 2, 7, 0, 2, 1, 6, 1, 5, 1, 3, 2, 6, 2, 9, 9, 4, 9, 5, 8, 9, 7, 8, 5, 9, 8, 2, 8, 8, 9, 8, 0, 0, 3, 7, 3, 7, 1, 0, 1, 5, 7, 5, 1, 9, 7, 3, 4, 5, 9, 4, 0, 3, 7, 4, 4, 9, 5, 1, 2, 5, 2, 4, 6, 3, 4, 4, 8, 8
Offset: 1

Views

Author

Peter Bala, Aug 30 2008

Keywords

Comments

Define E_3(n) = Sum_{k >= 0} (-1)^floor(k/3)*k^n/k! = 0^n/0! + 1^n/1! + 2^n/2! - 3^n/3! - 4^n/4! - 5^n/5! + + + - - - ... for n = 0,1,2,... . It is easy to see that E_3(n+3) = 3*E_3(n+2) - 2*E_3(n+1) - Sum_{i = 0..n} 3^i*binomial(n,i) * E_3(n-i) for n >= 0. Thus E_3(n) is an integral linear combination of E_3(0), E_3(1) and E_3(2). See the examples below.
The decimal expansions of E_3(1) and E_3(2) are given in A143626 and A143627. Compare with A143623 and A143624.
E_3(n) as linear combination of E_3(i), i = 0..2.
=======================================
..E_3(n)..|....E_3(0)...E_3(1)...E_3(2)
=======================================
..E_3(3)..|.....-1.......-2........3...
..E_3(4)..|.....-6.......-7........7...
..E_3(5)..|....-25......-23.......14...
..E_3(6)..|....-89......-80.......16...
..E_3(7)..|...-280.....-271......-77...
..E_3(8)..|...-700.....-750.....-922...
..E_3(9)..|...-380.....-647....-6660...
..E_3(10).|..13452....13039...-41264...
...
The columns are A143628, A143629 and A143630.

Examples

			2.284942382409635208999050...
		

References

  • Mohammad K. Azarian, A Generalization of the Climbing Stairs Problem, Mathematics and Computer Education Journal, Vol. 31, No. 1, pp. 24-28, Winter 1997.

Crossrefs

Programs

  • Mathematica
    RealDigits[ N[ (2*E^(3/2)*(Cos[Sqrt[3]/2] + Sqrt[3]*Sin[Sqrt[3]/2]) + 1)/(3*E), 105]][[1]] (* Jean-François Alcover, Nov 08 2012 *)

Extensions

Offset corrected by R. J. Mathar, Feb 05 2009

A100261 Continued fraction expansion of cot(1-Pi/4).

Original entry on oeis.org

4, 1, 1, 2, 2, 1, 16, 1, 4, 2, 5, 1, 28, 1, 7, 2, 8, 1, 40, 1, 10, 2, 11, 1, 52, 1, 13, 2, 14, 1, 64, 1, 16, 2, 17, 1, 76, 1, 19, 2, 20, 1, 88, 1, 22, 2, 23, 1, 100, 1, 25, 2, 26, 1, 112, 1, 28, 2, 29, 1, 124, 1, 31, 2, 32, 1, 136, 1, 34, 2, 35, 1, 148, 1, 37, 2, 38, 1, 160, 1, 40
Offset: 1

Views

Author

Ralf Stephan, Nov 18 2004

Keywords

Examples

			4.588037824983899981397906503733748769677138839382189177607356840...
		

References

  • Lipshitz, Leonard, and A. van der Poorten. "Rational functions, diagonals, automata and arithmetic." In Number Theory, Richard A. Mollin, ed., Walter de Gruyter, Berlin (1990): 339-358.

Crossrefs

Cf. A005131.

Programs

  • Mathematica
    ContinuedFraction[ -Im[(E^(2I) + I)/(E^(2I) - I)], 80] (* Robert G. Wilson v, Nov 20 2004 *)
    ContinuedFraction[Cot[1-Pi/4],100] (* Harvey P. Dale, Feb 26 2025 *)
  • PARI
    A100261(n) = if(1==n,4,if(n<4,1, n=n-4; my(k=n\6); if(!(n%6), 2, if(1==(n%6), 3*k + 2, if(3==(n%6), 12*k + 16, if(5==(n%6), 3*k + 4, 1)))))); \\ Antti Karttunen, Feb 15 2023

Formula

This number is also -Im[ (e^(2i)+i)/(e^(2i)-i) ].
Periodic part is ...2, 3k+2, 1, 12k+16, 1, 3k+4, ... (k=0..oo).
G.f.: -x*(x^11-x^10+2*x^9-2*x^8+x^7-8*x^6-x^5-2*x^4-2*x^3-x^2-x-4) / ((x-1)^2*(x+1)^2*(x^2-x+1)^2*(x^2+x+1)^2). - Colin Barker, Jul 15 2013
cot(1 - Pi/4) = (sin(1) + cos(1))/((sin(1) - cos(1))) = A143623/|A143624|. - Peter Bala, Jun 17 2025

A165457 a(n) = (2*n+1)!*(2*n+3)/3.

Original entry on oeis.org

1, 10, 280, 15120, 1330560, 172972800, 31135104000, 7410154752000, 2252687044608000, 851515702861824000, 391697223316439040000, 215433472824041472000000, 139600890389978873856000000
Offset: 0

Views

Author

Jaume Oliver Lafont, Sep 20 2009

Keywords

Crossrefs

Cf. A135003. [Jaume Oliver Lafont, Oct 03 2009]

Programs

  • GAP
    List([0..12],n->Factorial(2*n+1)*(2*n+3)/3); # Muniru A Asiru, Oct 21 2018
    
  • Magma
    [Factorial(2*n+1)*(2*n+3)/3: n in [0..30]]; // G. C. Greubel, Oct 20 2018
    
  • Maple
    seq(factorial(2*n+1)*(2*n+3)/3,n=0..12); # Muniru A Asiru, Oct 21 2018
  • Mathematica
    Table[(2*n + 1)!*(2*n + 3)/3, {n, 0, 30}] (* G. C. Greubel, Oct 20 2018 *)
  • PARI
    a(n)=(2*n+1)!*(2*n+3)/3
    
  • Python
    import math
    for n in range(0, 12): print(int(math.factorial(2*n+1)*(2*n+3)/3), end=', ') # Stefano Spezia, Oct 21 2018

Formula

a(n) = 2*n*(2*n+3)*a(n-1).
Sum_{k>=0} 1/a(k) = 3/e = A135003.
G.f.: 3F0(1,1,5/2;;4x). - R. J. Mathar, Oct 15 2009
Sum_{k>=0} (-1)^k/a(k) = 3*(sin(1)-cos(1)) = (-3)*A143624. - Amiram Eldar, Apr 12 2021

Extensions

frac keyword removed by Jaume Oliver Lafont, Nov 02 2009

A174549 a(n) = (2*n-1)! + (2*n)!.

Original entry on oeis.org

3, 30, 840, 45360, 3991680, 518918400, 93405312000, 22230464256000, 6758061133824000, 2554547108585472000, 1175091669949317120000, 646300418472124416000000, 418802671169936621568000000, 315777214062132212662272000000, 274094621805930760590852096000000
Offset: 1

Views

Author

Paul Curtz, Mar 22 2010

Keywords

Comments

x*cos(x) - sin(x) = Sum_{n>=1} (-1)^n/a(n) * x^(2*n+1). - James R. Buddenhagen, Nov 21 2013
Also the number of adjacency matrices for the n-helm graph. - Eric W. Weisstein, May 25 2017

Crossrefs

Programs

Formula

a(n) = A001048(2n) = (1+2n)*(2n-1)! = 3*A165457(n-1).
Sum_{n>=1} 1/a(n) = A068985 = 1/e = lim_{n->infinity} A000255(n-1)/A001048(n).
zeta(2*n+1) = Integral_{u=0..Pi/2} (sin(u)*log(sin(u))^(2*n+1)/(cos(u)^3))*(-2)^(2*n+1)/(n*a(n)) du. Verified for n=1 to 4 on Wolfram Alpha. - Jean-Claude Babois, Oct 28 2014
Sum_{n>=1} (-1)^(n+1)/a(n) = sin(1)-cos(1) = (-1)*A143624. - Amiram Eldar, Apr 12 2021

A143626 Decimal expansion of the constant E_3(1) := Sum_{k >= 0} (-1)^floor(k/3)*k/k! = 1/1! + 2/2! - 3/3! - 4/4! - 5/5! + + + - - - ... .

Original entry on oeis.org

1, 3, 0, 1, 5, 5, 9, 4, 9, 5, 9, 8, 2, 9, 7, 9, 6, 0, 2, 8, 4, 3, 0, 4, 2, 7, 0, 8, 2, 5, 5, 1, 9, 9, 2, 7, 4, 2, 3, 4, 9, 4, 6, 9, 7, 2, 9, 6, 4, 7, 7, 1, 7, 0, 0, 7, 4, 7, 5, 5, 3, 4, 1, 4, 2, 0, 7, 7, 2, 4, 0, 7, 2, 9, 9, 2, 5, 4, 4, 6, 4, 4, 4, 3, 7, 4, 5, 3, 0, 1, 0, 3, 2, 0, 4, 9, 5, 8, 3, 2, 7
Offset: 1

Views

Author

Peter Bala, Aug 30 2008

Keywords

Comments

Define E_3(n) = Sum_{k >= 0} (-1)^floor(k/3)*k^n/k! = 0^n/0! + 1^n/1! + 2^n/2! - 3^n/3! - 4^n/4! - 5^n/5! + + + - - - ... for n = 0,1,2,... . It is easy to see that E_3(n+3) = 3*E_3(n+2) - 2*E_3(n+1) - Sum_{i = 0..n} 3^i*binomial(n,i) * E_3(n-i) for n >= 0. Thus E_3(n) is an integral linear combination of E_3(0), E_3(1) and E_3(2). See the examples below.
The decimal expansions of E_3(0) and E_3(2) are given in A143635 and A143627. Compare with A143623 and A143624.
E_3(n) as linear combination of E_3(i), i = 0..2.
=======================================
..E_3(n)..|....E_3(0)...E_3(1)...E_3(2)
=======================================
..E_3(3)..|.....-1.......-2........3...
..E_3(4)..|.....-6.......-7........7...
..E_3(5)..|....-25......-23.......14...
..E_3(6)..|....-89......-80.......16...
..E_3(7)..|...-280.....-271......-77...
..E_3(8)..|...-700.....-750.....-922...
..E_3(9)..|...-380.....-647....-6660...
..E_3(10).|..13452....13039...-41264...
...
The columns are A143628, A143629 and A143630.

Examples

			1.3015594959829796028430427
		

Crossrefs

Programs

  • Mathematica
    RealDigits[ N[ (4*E^(3/2)*Cos[Sqrt[3]/2] - 1)/(3*E), 105]][[1]] (* Jean-François Alcover, Nov 08 2012 *)

Extensions

Offset corrected by R. J. Mathar, Feb 05 2009

A143627 Decimal expansion of the constant E_3(2) := sum {k = 0.. inf} (-1)^floor(k/3)*k^2/k! = 1/1! + 2^2/2! - 3^2/3! - 4^2/4! - 5^2/5! + + + - - - ... = 0.68605 60507 ... .

Original entry on oeis.org

6, 8, 6, 0, 5, 6, 0, 5, 0, 7, 2, 7, 7, 6, 6, 3, 1, 8, 2, 8, 2, 5, 5, 9, 1, 6, 7, 4, 0, 8, 7, 7, 6, 7, 1, 3, 7, 5, 4, 1, 9, 1, 8, 1, 3, 9, 6, 6, 3, 5, 2, 2, 5, 7, 4, 0, 4, 6, 5, 4, 6, 5, 0, 0, 7, 5, 5, 3, 8, 6, 2, 5, 9, 7, 8, 0, 1, 5, 6, 3, 2, 8, 2, 8, 3, 0, 8, 3, 4, 3, 7, 3, 4, 4, 4, 7, 8, 6, 0, 3
Offset: 0

Views

Author

Peter Bala, Aug 30 2008

Keywords

Comments

Define E_3(n) = sum {k = 0..inf} (-1)^floor(k/3)*k^n/k! = 0^n/0! + 1^n/1! + 2^n/2! - 3^n/3! - 4^n/4! - 5^n/5! + + + - - - ... for n = 0,1,2,... . It is easy to see that E_3(n+3) = 3*E_3(n+2) - 2*E_3(n+1) - sum {i = 0..n} 3^i*binomial(n,i) * E_3(n-i) for n >= 0. Thus E_3(n) is an integral linear combination of E_3(0), E_3(1) and E_3(2). See the examples below. The decimal expansions of E_3(0) and E_3(1) are given in A143625 and A143626. Compare with A143623 and A143624.

Examples

			E_3(n) as linear combination of E_3(i),
i = 0..2.
=======================================
..E_3(n)..|....E_3(0)...E_3(1)...E_3(2)
=======================================
..E_3(3)..|.....-1.......-2........3...
..E_3(4)..|.....-6.......-7........7...
..E_3(5)..|....-25......-23.......14...
..E_3(6)..|....-89......-80.......16...
..E_3(7)..|...-280.....-271......-77...
..E_3(8)..|...-700.....-750.....-922...
..E_3(9)..|...-380.....-647....-6660...
..E_3(10).|..13452....13039...-41264...
...
The columns are A143628, A143629 and A143630.
		

Crossrefs

Programs

  • Mathematica
    RealDigits[N[(8/3)*Sqrt[E]*Cos[Sqrt[3]/2] + (1/40)*(HypergeometricPFQ[{}, {7/3, 8/3}, -(1/27)] - 5*HypergeometricPFQ[{}, {5/3, 7/3}, -(1/27)]) - 2*Sqrt[E/3]*Sin[Sqrt[3]/2] - 5/(3*E), 105]][[1]] (* Jean-François Alcover, Nov 08 2012 *)

Extensions

Offset corrected by R. J. Mathar, Feb 05 2009
Showing 1-10 of 10 results.