cp's OEIS Frontend

This is a front-end for the Online Encyclopedia of Integer Sequences, made by Christian Perfect. The idea is to provide OEIS entries in non-ancient HTML, and then to think about how they're presented visually. The source code is on GitHub.

Showing 1-10 of 13 results. Next

A121867 Let A(0) = 1, B(0) = 0; A(n+1) = Sum_{k=0..n} binomial(n,k)*B(k), B(n+1) = Sum_{k=0..n} -binomial(n,k)*A(k); entry gives A sequence (cf. A121868).

Original entry on oeis.org

1, 0, -1, -3, -6, -5, 33, 266, 1309, 4905, 11516, -22935, -556875, -4932512, -32889885, -174282151, -612400262, 907955295, 45283256165, 573855673458, 5397236838345, 41604258561397, 250231901787780, 756793798761989, -8425656230853383, -213091420659985440, -2990113204010882473
Offset: 0

Views

Author

N. J. A. Sloane, Sep 05 2006

Keywords

Comments

Stirling transform of A056594.

Examples

			From _Peter Bala_, Aug 28 2008: (Start)
E_2(k) as linear combination of E_2(i), i = 0..1.
============================
..E_2(k)..|...E_2(0)..E_2(1)
============================
..E_2(2)..|....-1.......1...
..E_2(3)..|....-3.......0...
..E_2(4)..|....-6......-5...
..E_2(5)..|....-5.....-23...
..E_2(6)..|....33.....-74...
..E_2(7)..|...266....-161...
..E_2(8)..|..1309......57...
..E_2(9)..|..4905....3466...
...
(End)
		

Crossrefs

Programs

  • GAP
    List([0..30], n-> Sum([0..Int(n/2)], k-> (-1)^k*Stirling2(n,2*k)) ); # G. C. Greubel, Oct 09 2019
  • Magma
    [(&+[(-1)^k*StirlingSecond(n,2*k): k in [0..Floor(n/2)]]): n in [0..30]]; // G. C. Greubel, Oct 09 2019
    
  • Maple
    # Maple code for A024430, A024429, A121867, A121868.
    M:=30; a:=array(0..100); b:=array(0..100); c:=array(0..100); d:=array(0..100); a[0]:=1; b[0]:=0; c[0]:=1; d[0]:=0;
    for n from 1 to M do a[n]:=add(binomial(n-1,k)*b[k], k=0..n-1); b[n]:=add(binomial(n-1,k)*a[k], k=0..n-1); c[n]:=add(binomial(n-1,k)*d[k], k=0..n-1); d[n]:=-add(binomial(n-1,k)*c[k], k=0..n-1); od: ta:=[seq(a[n],n=0..M)]; tb:=[seq(b[n],n=0..M)]; tc:=[seq(c[n],n=0..M)]; td:=[seq(d[n],n=0..M)];
    # Code based on Stirling transform:
    stirtr:= proc(p) proc(n) option remember;
                add(p(k) *Stirling2(n,k), k=0..n) end
             end:
    a:= stirtr(n-> (I^n + (-I)^n)/2):
    seq(a(n), n=0..30);  # Alois P. Heinz, Jan 29 2011
  • Mathematica
    a[n_] := (BellB[n, -I] + BellB[n, I])/2; Table[a[n], {n, 0, 26}] (* Jean-François Alcover, Mar 06 2013, after Alois P. Heinz *)
  • PARI
    a(n) = sum(k=0,n\2, (-1)^k*stirling(n,2*k,2));
    vector(30, n, a(n-1)) \\ G. C. Greubel, Oct 09 2019
    
  • Sage
    [sum((-1)^k*stirling_number2(n,2*k) for k in (0..floor(n/2))) for n in (0..30)] # G. C. Greubel, Oct 09 2019
    

Formula

From Peter Bala, Aug 28 2008: (Start)
This sequence and its companion A121868 are related to the pair of constants cos(1) + sin(1) and cos(1) - sin(1) and may be viewed as generalizations of the Uppuluri-Carpenter numbers (complementary Bell numbers) A000587. Define E_2(k) = Sum_{n >= 0} (-1)^floor(n/2) * n^k/n! for k = 0,1,2,... . Then E_2(0) = cos(1) + sin(1) and E_2(1) = cos(1) - sin(1). It is easy to see that E_2(k+2) = E_2(k+1) - Sum_{i = 0..k} 2^i*binomial(k,i)*E_2(k-i) for k >= 0. Hence E_2(k) is an integral linear combination of E_2(0) and E_2(1) (a Dobinski-type relation). For example, E_2(2) = - E_2(0) + E_2(1), E_2(3) = -3*E_2(0) and E_2(4) = - 6*E_2(0) - 5*E_2(1). More examples are given below.
To find the precise result, show F(k) := Sum_{n >= 0} (-1)^floor((n+1)/2)*n^k/n! satisfies the above recurrence with F(0) = E_2(1) and F(1) = -E_2(0) and then use the identity Sum_{i = 0..k} binomial(k,i)*E_2(i) = -F(k+1) to obtain E_2(k) = A121867(k) * E_2(0) - A121868(k) * E_2(1). For similar results see A143628. The decimal expansions of E_2(0) and E_2(1) are given in A143623 and A143624 respectively. (End)
E.g.f.: A(x) = cos(exp(x)-1).
a(n) = Sum_{k=0..floor(n/2)} stirling2(n,2*k)*(-1)^(k). - Vladimir Kruchinin, Jan 29 2011

A057077 Periodic sequence 1,1,-1,-1; expansion of (1+x)/(1+x^2).

Original entry on oeis.org

1, 1, -1, -1, 1, 1, -1, -1, 1, 1, -1, -1, 1, 1, -1, -1, 1, 1, -1, -1, 1, 1, -1, -1, 1, 1, -1, -1, 1, 1, -1, -1, 1, 1, -1, -1, 1, 1, -1, -1, 1, 1, -1, -1, 1, 1, -1, -1, 1, 1, -1, -1, 1, 1, -1, -1, 1, 1, -1, -1, 1, 1, -1, -1, 1, 1, -1, -1, 1, 1, -1, -1
Offset: 0

Views

Author

Wolfdieter Lang, Aug 04 2000

Keywords

Comments

Abscissa of the image produced after n alternating reflections of (1,1) over the x and y axes respectively. Similarly, the ordinate of the image produced after n alternating reflections of (1,1) over the y and x axes respectively. - Wesley Ivan Hurt, Jul 06 2013

Crossrefs

Programs

Formula

G.f.: (1+x)/(1+x^2).
a(n) = S(n, 0) + S(n-1, 0) = S(2*n, sqrt(2)); S(n, x) := U(n, x/2), Chebyshev polynomials of 2nd kind, A049310. S(n, 0)=A056594.
a(n) = (-1)^binomial(n,2) = (-1)^floor(n/2) = 1/2*((n+2) mod 4 - n mod 4). For fixed r = 0,1,2,..., it appears that (-1)^binomial(n,2^r) gives a periodic sequence of period 2^(r+1), the period consisting of a block of 2^r plus ones followed by a block of 2^r minus ones. See A033999 (r = 0), A143621 (r = 2) and A143622 (r = 3). Define E(k) = sum {n = 0..inf} a(n)*n^k/n! for k = 0,1,2,... . Then E(0) = cos(1) + sin(1), E(1) = cos(1) - sin(1) and E(k) is an integral linear combination of E(0) and E(1) (a Dobinski-type relation). Precisely, E(k) = A121867(k) * E(0) - A121868(k) * E(1). See A143623 and A143624 for the decimal expansions of E(0) and E(1) respectively. For a fixed value of r, similar relations hold between the values of the sums E_r(k) := Sum_{n>=0} (-1)^floor(n/r)*n^k/n!, k = 0,1,2,... . For particular cases see A000587 (r = 1) and A143628 (r = 3). - Peter Bala, Aug 28 2008
Sum_{k>=0} a(k)/(k+1) = Sum_{k>=0} 1/((a(k)*(k+1))) = log(2)/2 + Pi/4. - Jaume Oliver Lafont, Apr 30 2010
a(n) = (-1)^A180969(1,n), where the first index in A180969(.,.) is the row index. - Adriano Caroli, Nov 18 2010
a(n) = (-1)^((2*n+(-1)^n-1)/4) = i^((n-1)*n), with i=sqrt(-1). - Bruno Berselli, Dec 27 2010 - Aug 26 2011
Non-simple continued fraction expansion of (3+sqrt(5))/2 = A104457. - R. J. Mathar, Mar 08 2012
E.g.f.: cos(x)*(1 + tan(x)). - Arkadiusz Wesolowski, Aug 31 2012
From Ricardo Soares Vieira, Oct 15 2019: (Start)
E.g.f.: sin(x) + cos(x) = sqrt(2)*sin(x + Pi/4).
a(n) = sqrt(2)*(d^n/dx^n) sin(x)|_x=Pi/4, i.e., a(n) equals sqrt(2) times the n-th derivative of sin(x) evaluated at x=Pi/4. (End)
a(n) = 4*floor(n/4) - 2*floor(n/2) + 1. - Ridouane Oudra, Mar 23 2024

A024429 Expansion of e.g.f. sinh(exp(x)-1).

Original entry on oeis.org

0, 1, 1, 2, 7, 27, 106, 443, 2045, 10440, 57781, 340375, 2115664, 13847485, 95394573, 690495874, 5235101739, 41428115543, 341177640610, 2917641580783, 25866987547865, 237421321934176, 2252995117706961, 22073206655954547, 222971522853648704, 2319379362420267753
Offset: 0

Views

Author

Keywords

Comments

Number of partitions of an n-element set into an odd number of classes. - Peter Luschny, Apr 25 2011
Let A(0) = 1, B(0) = 0; A(n+1) = Sum_{k=0..n} binomial(n,k)*B(k), B(n+1) = Sum_{k=0..n} binomial(n,k)*A(k); entry gives B sequence (cf. A024430).

Examples

			G.f. = x + x^2 + 2*x^3 + 7*x^4 + 27*x^5 + 106*x^6 + 443*x^7 + 2045*x^8 + ...
		

References

  • L. Comtet, Advanced Combinatorics, Reidel, 1974, p. 226, 4th line of table.

Crossrefs

Programs

  • GAP
    List([0..25], n-> Sum([0..Int(n/2)], k-> Stirling2(n,2*k+1)) ); # G. C. Greubel, Oct 09 2019
  • Magma
    a:= func< n | (&+[StirlingSecond(n,2*k+1): k in [0..Floor(n/2)]]) >;
    [a(n): n in [0..25]]; // G. C. Greubel, Oct 09 2019
    
  • Maple
    b:= proc(n, t) option remember; `if`(n=0, t, add(
           b(n-j, 1-t)*binomial(n-1, j-1), j=1..n))
        end:
    a:= n-> b(n, 0):
    seq(a(n), n=0..28);  # Alois P. Heinz, Jan 15 2018
    with(combinat); seq((bell(n) - BellB(n, -1))/2, n = 0..25); # G. C. Greubel, Oct 09 2019
  • Mathematica
    CoefficientList[Series[Sinh[E^x-1], {x, 0, 20}], x] * Range[0, 20]! (* Vaclav Kotesovec, Aug 04 2014 *)
    Table[(BellB[n] - BellB[n, -1])/2, {n, 0, 20}] (* Vladimir Reshetnikov, Nov 01 2015 *)
  • PARI
    x='x+O('x^50); concat([0], Vec(serlaplace(sinh(exp(x)-1)))) \\ G. C. Greubel, Nov 12 2017
    
  • Sage
    def A024429(n) :
        return add(stirling_number2(n,i) for i in range(1,n+n%2,2))
    # Peter Luschny, Feb 28 2012
    

Formula

S(n,1) + S(n,3) + ... + S(n,2k+1), where k = [ (n-1)/2 ] and S(i,j) are Stirling numbers of second kind.
E.g.f.: sinh(exp(x)-1). - N. J. A. Sloane, Jan 28 2001
a(n) = (A000110(n) - A000587(n)) / 2. - Peter Luschny, Apr 25 2011
G.f.: x*G(0) where G(k) = 1 - x*(2*k+1)/((2*x*k+x-1) - x*(2*x*k+x-1)/(x - (2*k+1)*(2*x*k+2*x-1)/G(k+1) )); (recursively defined continued fraction). - Sergei N. Gladkovskii, Jan 06 2013
G.f.: x*G(0)/(1+x) where G(k) = 1 - 2*x*(k+1)/((2*x*k+x-1) - x*(2*x*k+x-1)/(x - 2*(k+1)*(2*x*k+2*x-1)/G(k+1) )); (recursively defined continued fraction). - Sergei N. Gladkovskii, Jan 06 2013
G.f.: -x*(1+x)*Sum_{k>=0} x^(2*k)/((2*x*k+x-1)*Product_{p=0..k} (2*x*p-1)*(2*x*p-x-1)). - Sergei N. Gladkovskii, Jan 06 2013
G.f.: Sum_{k>=0} x^(2*k+1)/(Product_{i=0..2*k+1} 1-i*x). - Sergei N. Gladkovskii, Jan 06 2013
a(n) ~ n^n / (2 * (LambertW(n))^n * exp(n+1-n/LambertW(n)) * sqrt(1+LambertW(n))). - Vaclav Kotesovec, Aug 04 2014

Extensions

Description changed by N. J. A. Sloane, Sep 05 2006

A024430 Expansion of e.g.f. cosh(exp(x)-1).

Original entry on oeis.org

1, 0, 1, 3, 8, 25, 97, 434, 2095, 10707, 58194, 338195, 2097933, 13796952, 95504749, 692462671, 5245040408, 41436754261, 340899165549, 2915100624274, 25857170687507, 237448494222575, 2253720620740362, 22078799199129799, 222987346441156585, 2319210969809731600
Offset: 0

Views

Author

Keywords

Comments

Number of partitions of an n-element set into an even number of classes.
Let A(0) = 1, B(0) = 0; A(n+1) = Sum_{k=0..n} binomial(n,k)*B(k), B(n+1) = Sum_{k=0..n} binomial(n,k)*A(k); entry gives A sequence (cf. A024429).

References

  • L. Comtet, Advanced Combinatorics, Reidel, 1974, p. 226, 5th line of table.
  • S. K. Ghosal, J. K. Mandal, Stirling Transform Based Color Image Authentication, Procedia Technology, 2013 Volume 10, 2013, Pages 95-104.
  • L. Lovasz, Combinatorial Problems and Exercises, North-Holland, 1993, pp. 15, 148.

Crossrefs

Programs

  • GAP
    List([0..25], n-> Sum([0..Int(n/2)], k-> Stirling2(n,2*k)) ); # G. C. Greubel, Oct 09 2019
  • Magma
    a:= func< n | (&+[StirlingSecond(n,2*k): k in [0..Floor(n/2)]]) >;
    [a(n): n in [0..25]]; // G. C. Greubel, Oct 09 2019
    
  • Maple
    b:= proc(n, t) option remember; `if`(n=0, t, add(
           b(n-j, 1-t)*binomial(n-1, j-1), j=1..n))
        end:
    a:= n-> b(n, 1):
    seq(a(n), n=0..28);  # Alois P. Heinz, Jan 15 2018
    with(combinat); seq((bell(n) + BellB(n, -1))/2, n = 0..20); # G. C. Greubel, Oct 09 2019
  • Mathematica
    nn=20;a=Exp[Exp[x]-1];Range[0,nn]!CoefficientList[Series[(a+1/a)/2,{x,0,nn}],x]  (* Geoffrey Critzer, Nov 04 2012 *)
    Table[(BellB[n] + BellB[n, -1])/2, {n, 0, 20}] (* Vladimir Reshetnikov, Nov 01 2015 *)
  • PARI
    {a(n)=polcoeff(sum(m=0, n, x^(2*m)/prod(k=1, 2*m, 1-k*x +x*O(x^n))), n)} \\ Paul D. Hanna, Sep 05 2012
    
  • Sage
    def A024430(n) :
        return add(stirling_number2(n,i) for i in range(0,n+(n+1)%2,2))
    # Peter Luschny, Feb 28 2012
    

Formula

a(n) = S(n, 2) + S(n, 4) + ... + S(n, 2k), where k = [ n/2 ], S(i, j) are Stirling numbers of second kind.
E.g.f.: cosh(exp(x)-1). - N. J. A. Sloane, Jan 28 2001
a(n) = (A000110(n) + A000587(n)) / 2. - Peter Luschny, Apr 25 2011
O.g.f.: Sum_{n>=0} x^(2*n) / Product_{k=0..2*n} (1 - k*x). - Paul D. Hanna, Sep 05 2012
G.f.: G(0)/(1+x) where G(k) = 1 - x*(2*k+1)/((2*x*k-1) - x*(2*x*k-1)/(x - (2*k+1)*(2*x*k+x-1)/G(k+1) )); (recursively defined continued fraction). - Sergei N. Gladkovskii, Jan 05 2013
G.f.: G(0)/(1+2*x) where G(k) = 1 - 2*x*(k+1)/((2*x*k-1) - x*(2*x*k-1)/(x - 2*(k+1)*(2*x*k+x-1)/G(k+1) )); (recursively defined continued fraction). - Sergei N. Gladkovskii, Jan 05 2013
a(n) ~ n^n / (2 * (LambertW(n))^n * exp(n+1-n/LambertW(n)) * sqrt(1+LambertW(n))). - Vaclav Kotesovec, Aug 04 2014

Extensions

Description changed by N. J. A. Sloane, Jun 14 2003 and again Sep 05 2006

A143623 Decimal expansion of the constant cos(1) + sin(1).

Original entry on oeis.org

1, 3, 8, 1, 7, 7, 3, 2, 9, 0, 6, 7, 6, 0, 3, 6, 2, 2, 4, 0, 5, 3, 4, 3, 8, 9, 2, 9, 0, 7, 3, 2, 7, 5, 6, 0, 3, 3, 5, 4, 8, 7, 3, 4, 8, 1, 4, 1, 6, 2, 9, 3, 2, 9, 3, 3, 4, 2, 8, 4, 8, 9, 6, 5, 3, 7, 3, 0, 1, 0, 7, 9, 9, 1, 6, 5, 7, 1, 1, 4, 3, 3, 4, 6, 6, 5, 9, 1, 5, 9, 9, 6, 3, 0, 2, 3, 5, 7, 8, 5, 1
Offset: 1

Views

Author

Peter Bala, Aug 30 2008

Keywords

Comments

cos(1) + sin(1) = Sum_{n >= 0} (-1)^floor(n/2)/n! = 1 + 1/1! - 1/2! - 1/3! + 1/4! + 1/5! - 1/6! - 1/7! + + - - ... .
Define E_2(k) = Sum_{n >= 0} (-1)^floor(n/2)*n^k/n! for k = 0, 1, 2, ... . Then E_2(0) = cos(1) + sin(1) and E_2(1) = cos(1) - sin(1).
Furthermore, E_2(k) is an integral linear combination of E_2(0) and E_2(1) (a Dobinski-type relation). For example, E_2(2) = E_2(1) - E_2(0), E_2(3) = -3*E_2(0) and E_2(4) = -5*E_2(1) - 6*E_2(0). The precise result is E_2(k) = A121867(k) * E_2(0) - A121868(k) * E_2(1).
The decimal expansion of the constant cos(1) - sin(1) = E_2(1) is recorded in A143624. Compare with A143625.

Examples

			1.38177329067603622405 ... .
		

Crossrefs

Programs

Formula

Equals sin(1+Pi/4)*sqrt(2). - Franklin T. Adams-Watters, Jun 27 2014

Extensions

Offset corrected by R. J. Mathar, Feb 05 2009

A143624 Decimal expansion of the negated constant cos(1) - sin(1) = -0.3011686789...

Original entry on oeis.org

3, 0, 1, 1, 6, 8, 6, 7, 8, 9, 3, 9, 7, 5, 6, 7, 8, 9, 2, 5, 1, 5, 6, 5, 7, 1, 4, 1, 8, 7, 3, 2, 2, 3, 9, 5, 8, 9, 0, 2, 5, 2, 6, 4, 0, 1, 8, 0, 4, 4, 8, 8, 3, 8, 0, 0, 2, 6, 5, 4, 4, 5, 4, 6, 1, 0, 8, 1, 0, 0, 0, 9, 6, 1, 6, 7, 6, 7, 9, 0, 4, 4, 3, 0, 6, 8, 7, 8, 8, 7, 4, 5, 5, 8, 6, 9, 6, 0, 6, 5
Offset: 0

Views

Author

Peter Bala, Aug 30 2008

Keywords

Comments

cos(1) - sin(1) = Sum_{n>=0} (-1)^floor(n/2)*n/n! = 1/1! - 2/2! - 3/3! + 4/4! + 5/5! - 6/6! - 7/7! + + - - ... . Define E_2(k) = Sum_{n>=0} (-1)^floor(n/2)*n^k/n! for k = 0,1,2,... . Then E_2(1) = cos(1) - sin(1) and E_2(0) = cos(1) + sin(1). Furthermore, E_2(k) is an integral linear combination of E_2(0) and E_2(1) (a Dobinski-type relation). For example, E_2(2) = E_2(1) - E_2(0), E_2(3) = -3*E_2(0) and E_2(4) = -5*E_2(1) - 6*E_2(0). The precise result is E_2(k) = A121867(k) * E_2(0) - A121868(k) * E_2(1). The decimal expansion of the constant cos(1) + sin(1) is recorded in A143623. Compare with A143625.

Examples

			 -0.30116867893975678925156571418732239589025264018...
		

Crossrefs

Programs

Formula

Equals sin(1-Pi/4)*sqrt(2). - Franklin T. Adams-Watters, Jun 27 2014
Equals j_1(1), where j_1(z) is the spherical Bessel function of the first kind. - Stanislav Sykora, Jan 11 2017
From Amiram Eldar, Aug 07 2020: (Start)
Equals -Integral_{x=0..1} x*sin(x) dx.
Equals Sum_{k>=1} (-1)^k/((2*k-1)! * (2*k+1)) = Sum_{k>=1} (-1)^k/A174549(k). (End)

Extensions

Added sign in definition. Offset corrected by R. J. Mathar, Feb 05 2009

A143631 Let A(0) = 1, B(0) = 0 and C(0) = 0. Let A(n+1) = - Sum_{k = 0..n} binomial(n,k)*C(k), B(n+1) = Sum_{k = 0..n} binomial(n,k)*A(k) and C(n+1) = Sum_{k = 0..n} binomial(n,k)*B(k). This entry gives the sequence B(n).

Original entry on oeis.org

0, 1, 1, 1, 0, -9, -64, -348, -1672, -7307, -28225, -81817, 14191, 3143571, 38184875, 353727284, 2916494333, 22260343389, 157677357255, 1007259846130, 5241783274713, 12146415146776, -210638381350012, -4813155361775252
Offset: 0

Views

Author

Peter Bala, Sep 05 2008

Keywords

Comments

The other sequences are A(n) = A143628(n) and C(n) = A143630(n). Compare with A121867 and A121868. See also A143816.

Crossrefs

Programs

  • Maple
    # Compare with A143816
    #
    M:=24: a:=array(0..100): b:=array(0..100): c:=array(0..100):
    a[0]:=1: b[0]:=0: c[0]:=0:
    for n from 1 to M do
    a[n]:= -add(binomial(n-1,k)*c[k], k=0..n-1);
    b[n]:= add(binomial(n-1,k)*a[k], k=0..n-1);
    c[n]:= add(binomial(n-1,k)*b[k], k=0..n-1);
    end do:
    A143631:=[seq(b[n], n=0..M)];
  • Mathematica
    m = 23; a[0] = 1; b[0] = 0; c[0] = 0; For[n = 1, n <= m, n++, b[n] = -Sum[Binomial[n - 1, k]*a[k], {k, 0, n - 1}]; c[n] = Sum[Binomial[n - 1, k]*b[k], {k, 0, n - 1}];  a[n] = Sum[Binomial[n - 1, k]*c[k], {k, 0, n - 1}]]; A143631 = Table[ -b[n], {n, 0, m}] (* Jean-François Alcover, Mar 06 2013, after Maple *)
  • PARI
    Bell_poly(n, x) = exp(-x)*suminf(k=0, k^n*x^k/k!);
    a(n) = my(w=(-1+sqrt(3)*I)/2); -round(Bell_poly(n, -1)+w^2*Bell_poly(n, -w)+w*Bell_poly(n, -w^2))/3; \\ Seiichi Manyama, Oct 15 2022

Formula

a(n) = A143629(n) + A143630(n).
From Seiichi Manyama, Oct 15 2022: (Start)
a(n) = Sum_{k = 0..floor((n-1)/3)} (-1)^k * Stirling2(n,3*k+1).
a(n) = -( Bell_n(-1) + w^2 * Bell_n(-w) + w * Bell_n(-w^2) )/3, where Bell_n(x) is n-th Bell polynomial and w = exp(2*Pi*i/3). (End)

A358607 a(n) = Sum_{k=0..floor(n/2)} (-1)^k * (n-2*k)!.

Original entry on oeis.org

1, 1, 1, 5, 23, 115, 697, 4925, 39623, 357955, 3589177, 39558845, 475412423, 6187461955, 86702878777, 1301486906045, 20836087009223, 354385941189955, 6381537618718777, 121290714467642045, 2426520470557921223, 50969651457241797955, 1121574207307049758777
Offset: 0

Views

Author

Seiichi Manyama, Nov 23 2022

Keywords

Crossrefs

Programs

  • PARI
    a(n) = sum(k=0, n\2, (-1)^k*(n-2*k)!);

Formula

a(n) = n * a(n-1) - a(n-2) + n * a(n-3) for n > 2.
a(n) ~ n! * (1 - 1/n^2 - 1/n^3 + 5/n^5 + 23/n^6 + 74/n^7 + 161/n^8 - 57/n^9 - 3466/n^10 - ...), for coefficients see A121868. - Vaclav Kotesovec, Nov 25 2022
a(2n) = 1+A215096(2n). a(2n+1) = A215096(2n+1). - R. J. Mathar, Jun 14 2024

A121869 Monthly Problem 10791, first expression.

Original entry on oeis.org

-1, 1, 0, -5, -15, 104, 1827, 7893, -207000, -5646249, -47897675, 1479282600, 74711288407, 1396956334921, -21032523700672, -2719998717430365, -104158663871982343, -715846242343471272, 189941380201812700699, 14820744271258596866013, 507768838531742620183176
Offset: 0

Views

Author

N. J. A. Sloane, Sep 05 2006

Keywords

Crossrefs

Programs

  • GAP
    List([0..25], n-> (-1)*Sum([0..n], k-> Stirling2(n,k)) *Sum([0..n], k-> (-1)^k*Stirling2(n,k)) ); # G. C. Greubel, Oct 08 2019
  • Magma
    a:= func< n | (-1)*(&+[StirlingSecond(n,k): k in [0..n]])*(&+[ (-1)^k*StirlingSecond(n,k): k in [0..n]]) >;
    [a(n): n in [0..25]]; // G. C. Greubel, Oct 08 2019
    
  • Maple
    with(combinat): seq(-bell(n)*BellB(n, -1), n = 0..25); # G. C. Greubel, Oct 08 2019
  • Mathematica
    Table[-BellB[n]*BellB[n, -1], {n,0,25}] (* G. C. Greubel, Oct 08 2019 *)
  • PARI
    a(n) = (-1)*sum(k=0,n, stirling(n,k,2))*sum(k=0,n, (-1)^k*stirling(n,k,2));
    vector(25, n, a(n-1)) \\ G. C. Greubel, Oct 08 2019
    
  • Sage
    [ -sum(stirling_number2(n, k) for k in (0..n))*sum((-1)^k* stirling_number2(n,k) for k in (0..n)) for n in (0..25)] # G. C. Greubel, Oct 08 2019
    

Formula

a(n) = A024429(n)^2 - A024430(n)^2.

A009061 Expansion of e.g.f. cos(sinh(x)*exp(x)).

Original entry on oeis.org

1, 0, -1, -6, -27, -100, -237, 742, 18025, 194904, 1689671, 12483570, 72272013, 155614004, -4305757029, -101460169442, -1561477983407, -20064006763728, -223375429298929, -2048612121431958, -11401251676320843, 95849085744834380
Offset: 0

Views

Author

Keywords

Crossrefs

Programs

  • Magma
    m:=30; R:=PowerSeriesRing(Rationals(), m); b:=Coefficients(R!(Cos(Sinh(x)*Exp(x)))); [Factorial(n-1)*b[n]: n in [1..m]]; // G. C. Greubel, Jul 23 2018
  • Maple
    seq(coeff(series(factorial(n)*cos(sinh(x)*exp(x)), x,n+1),x,n),n=0..25); # Muniru A Asiru, Jul 24 2018
  • Mathematica
    Table[SeriesCoefficient[Cos[Sinh[x] Exp[x]], {x, 0, n}] n!, {n, 0, 20}]
    Table[2^n Re[BellB[n, I/2]], {n, 0, 20}] (* Vladimir Reshetnikov, Oct 22 2015 *)
  • PARI
    x='x+O('x^30); Vec(serlaplace(cos(sinh(x)*exp(x)))) \\ G. C. Greubel, Jul 23 2018
    

Formula

a(n) = 2^n*Re(B_n(i/2)), where B_n(x) is n-th Bell polynomial, i=sqrt(-1). Vladimir Reshetnikov, Oct 22 2015

Extensions

Extended with signs by Olivier Gérard, Mar 15 1997
Showing 1-10 of 13 results. Next