A096252 Array read by rows, starting with n=0: row n lists A057077(n+1)*8^(n+1)/2, A057077(n+2)*8^(n+1)/2, A057077(n+1)*8^(n+1).
4, -4, 8, -32, -32, -64, -256, 256, -512, 2048, 2048, 4096, 16384, -16384, 32768, -131072, -131072, -262144, -1048576, 1048576, -2097152, 8388608, 8388608, 16777216, 67108864, -67108864, 134217728, -536870912, -536870912, -1073741824
Offset: 0
Links
- Danny Rorabaugh, Table of n, a(n) for n = 0..1000
- C. Dement, The Math Forum.
- Index entries for linear recurrences with constant coefficients, signature (0,4,0,-16).
Programs
-
Mathematica
CoefficientList[Series[4(1-x-2x^2-4x^3)/(1-4x^2+16x^4),{x,0,40}],x] (* or *) LinearRecurrence[ {0,4,0,-16},{4,-4,8,-32},40] (* Harvey P. Dale, Feb 15 2024 *)
-
Sage
[(-1)^(floor((floor(n/3)+((n%3)%2)+1)/2)) * 8^(floor(n/3)+1) / 2^(((n+1)^2)%3) for n in range(30)] # Danny Rorabaugh, May 13 2016
Formula
a(n)= 4*a(n-2)-16*a(n-4). G.f.: 4*(1-x-2*x^2-4*x^3)/(1-4*x^2+16*x^4). - R. J. Mathar, Nov 26 2008
a(n) = (-1)^(floor((floor(n/3)+((n mod 3) mod 2)+1)/2)) * 8^(floor(n/3)+1) / 2^(((n+1)^2) mod 3). - Danny Rorabaugh, May 13 2016
a(n) = 4*(-1)^floor((n+1)/2)*A138230(n). - R. J. Mathar, May 21 2019
Extensions
Edited with clearer definition by Omar E. Pol, Dec 29 2008
Comments