A273226 G.f. is the cube of the g.f. of A006950.
1, 3, 6, 13, 27, 51, 91, 159, 273, 455, 738, 1179, 1860, 2886, 4410, 6667, 9981, 14781, 21671, 31512, 45474, 65113, 92547, 130689, 183439, 255930, 355017, 489895, 672672, 919152, 1250107, 1692846, 2282895, 3066180, 4102224, 5468160, 7263217, 9614436, 12684633, 16682276
Offset: 0
Keywords
Links
- Robert Israel, Table of n, a(n) for n = 0..10000
- M. D. Hirschhorn and J. A. Sellers, Arithmetic properties of partitions with odd parts distinct, Ramanujan J. 22 (2010), 273--284.
- M. S. Mahadeva Naika and D. S. Gireesh, Arithmetic Properties of Partition k-tuples with Odd Parts Distinct, JIS, Vol. 19 (2016), Article 16.5.7
- L. Wang, Arithmetic properties of partition triples with odd parts distinct, Int. J. Number Theory, 11 (2015), 1791--1805.
- L. Wang, Arithmetic properties of partition quadruples with odd parts distinct, Bull. Aust. Math. Soc., doi:10.1017/S0004972715000647.
- L. Wang, New congruences for partitions where the odd parts are distinct, J. Integer Seq. (2015), article 15.4.2.
Crossrefs
Cf. A006950.
Programs
-
Maple
N:= 50: G:= mul((1+x^k)^3,k=1..N)/mul((1-x^(4*k))^3,k=1..N/4): S:= series(G,x,N+1): seq(coeff(S,x,j),j=0..N); # Robert Israel, Jan 21 2019
-
Mathematica
s = QPochhammer[-1, x]^3/(8*QPochhammer[x^4, x^4]^3) + O[x]^40; CoefficientList[s, x] (* Jean-François Alcover, May 20 2016 *)
Formula
G.f.: Product_{k>=1} (1 + x^k)^3 / (1 - x^(4*k))^3, corrected by Vaclav Kotesovec, Mar 25 2017.
a(n) ~ 3*exp(sqrt(3*n/2)*Pi) / (16*n^(3/2)). - Vaclav Kotesovec, Mar 25 2017
Extensions
Edited by N. J. A. Sloane, May 26 2016
Comments