A000070
a(n) = Sum_{k=0..n} p(k) where p(k) = number of partitions of k (A000041).
Original entry on oeis.org
1, 2, 4, 7, 12, 19, 30, 45, 67, 97, 139, 195, 272, 373, 508, 684, 915, 1212, 1597, 2087, 2714, 3506, 4508, 5763, 7338, 9296, 11732, 14742, 18460, 23025, 28629, 35471, 43820, 53963, 66273, 81156, 99133, 120770, 146785, 177970, 215308, 259891, 313065, 376326, 451501
Offset: 0
G.f. = 1 + 2*x + 4*x^2 + 7*x^3 + 12*x^4 + 19*x^5 + 30*x^6 + 45*x^7 + 67*x^8 + ...
From _Omar E. Pol_, Oct 25 2012: (Start)
For n = 5 consider the partitions of n+1:
--------------------------------------
. Number
Partitions of 6 of 1's
--------------------------------------
6 .......................... 0
3 + 3 ...................... 0
4 + 2 ...................... 0
2 + 2 + 2 .................. 0
5 + 1 ...................... 1
3 + 2 + 1 .................. 1
4 + 1 + 1 .................. 2
2 + 2 + 1 + 1 .............. 2
3 + 1 + 1 + 1 .............. 3
2 + 1 + 1 + 1 + 1 .......... 4
1 + 1 + 1 + 1 + 1 + 1 ...... 6
------------------------------------
35-16 = 19
.
The difference between the sum of the first column and the sum of the second column of the set of partitions of 6 is 35 - 16 = 19 and equals the number of 1's in all partitions of 6, so the 6th term of this sequence is a(5) = 19.
(End)
From _Gus Wiseman_, Oct 26 2018: (Start)
With offset 1, the a(1) = 1 through a(6) = 19 partitions of 2*n whose greatest part is > n:
(2) (4) (6) (8) (A) (C)
(31) (42) (53) (64) (75)
(51) (62) (73) (84)
(411) (71) (82) (93)
(521) (91) (A2)
(611) (622) (B1)
(5111) (631) (732)
(721) (741)
(811) (822)
(6211) (831)
(7111) (921)
(61111) (A11)
(7221)
(7311)
(8211)
(9111)
(72111)
(81111)
(711111)
With offset 1, the a(1) = 1 through a(6) = 19 partitions of 2*n whose number of parts is > n:
(11) (211) (2211) (22211) (222211) (2222211)
(1111) (3111) (32111) (322111) (3222111)
(21111) (41111) (331111) (3321111)
(111111) (221111) (421111) (4221111)
(311111) (511111) (4311111)
(2111111) (2221111) (5211111)
(11111111) (3211111) (6111111)
(4111111) (22221111)
(22111111) (32211111)
(31111111) (33111111)
(211111111) (42111111)
(1111111111) (51111111)
(222111111)
(321111111)
(411111111)
(2211111111)
(3111111111)
(21111111111)
(111111111111)
(End)
From _Joerg Arndt_, Jan 01 2024: (Start)
The a(5) = 19 multiset partitions of the multiset {1^5, 2^1} are:
1: {{1, 1, 1, 1, 1, 2}}
2: {{1, 1, 1, 1, 1}, {2}}
3: {{1, 1, 1, 1, 2}, {1}}
4: {{1, 1, 1, 1}, {1, 2}}
5: {{1, 1, 1, 1}, {1}, {2}}
6: {{1, 1, 1, 2}, {1, 1}}
7: {{1, 1, 1, 2}, {1}, {1}}
8: {{1, 1, 1}, {1, 1, 2}}
9: {{1, 1, 1}, {1, 1}, {2}}
10: {{1, 1, 1}, {1, 2}, {1}}
11: {{1, 1, 1}, {1}, {1}, {2}}
12: {{1, 1, 2}, {1, 1}, {1}}
13: {{1, 1, 2}, {1}, {1}, {1}}
14: {{1, 1}, {1, 1}, {1, 2}}
15: {{1, 1}, {1, 1}, {1}, {2}}
16: {{1, 1}, {1, 2}, {1}, {1}}
17: {{1, 1}, {1}, {1}, {1}, {2}}
18: {{1, 2}, {1}, {1}, {1}, {1}}
19: {{1}, {1}, {1}, {1}, {1}, {2}}
(End)
- H. Gupta, An asymptotic formula in partitions. J. Indian Math. Soc., (N. S.) 10 (1946), 73-76.
- H. Gupta et al., Tables of Partitions. Royal Society Mathematical Tables, Vol. 4, Cambridge Univ. Press, 1958, p. 90.
- R. Honsberger, Mathematical Gems III, M.A.A., 1985, p. 6.
- D. E. Knuth, The Art of Computer Programming, Vol. 4A, Table A-1, page 778. - N. J. A. Sloane, Dec 30 2018
- A. M. Odlyzko, Asymptotic Enumeration Methods, p. 19
- J. Riordan, Combinatorial Identities, Wiley, 1968, p. 199.
- N. J. A. Sloane, A Handbook of Integer Sequences, Academic Press, 1973 (includes this sequence).
- N. J. A. Sloane and Simon Plouffe, The Encyclopedia of Integer Sequences, Academic Press, 1995 (includes this sequence).
- Stanley, R. P., Exercise 1.26 in Enumerative Combinatorics, Vol. 1. Cambridge, England: Cambridge University Press, p. 59, 1999.
- T. D. Noe, Table of n, a(n) for n = 0..1000
- P. A. Baikov and S. V. Mikhailov, The {beta}-expansion for Adler function, Bjorken Sum Rule, and the Crewther-Broadhurst-Kataev relation at order O(alpha_s^4), J. High Energy Phys. 09 (2022) Art. No. 185. See also arXiv:2206.14063 [hep-ph], 2022.
- Kevin Beanland and Hung Viet Chu, On Schreier-type Sets, Partitions, and Compositions, arXiv:2311.01926 [math.CO], 2023.
- David Benson, Radha Kessar, and Markus Linckelmann, Hochschild cohomology of symmetric groups in low degrees, arXiv:2204.09970 [math.GR], 2022.
- Philip Boalch, Counting the fission trees and nonabelian Hodge graphs, arXiv:2410.23358 [math.AG], 2024. See p. 15.
- L. Bracci and L. E. Picasso, A simple iterative method to write the terms of any order of perturbation theory in quantum mechanics, The European Physical Journal Plus, 127 (2012), Article 119. - From _N. J. A. Sloane_, Dec 31 2012
- Emmanuel Briand, Samuel A. Lopes, and Mercedes Rosas, Normally ordered forms of powers of differential operators and their combinatorics, arXiv:1811.00857 [math.CO], 2018.
- C. C. Cadogan, On partly ordered partitions of a positive integer, Fib. Quart., 9 (1971), 329-336.
- P. J. Cameron, Sequences realized by oligomorphic permutation groups, J. Integ. Seqs. Vol. 3 (2000), #00.1.5.
- M. S. Cheema and H. Gupta, Tables of Partitions of Gaussian Integers, National Institute of Sciences of India, Mathematical Tables, Vol. 1, New Delhi, 1956. (Annotated scanned pages from, plus a review)
- Philip Cuthbertson, Fixed hooks in arbitrary columns of partitions, Integers (2025) Vol. 25, Art. No. A28. See p. 3.
- Mario De Salvo, Dario Fasino, Domenico Freni and Giovanni Lo Faro, A Family of 0-Simple Semihypergroups Related to Sequence A000070, Journal of Multiple-Valued Logic & Soft Computing, 2016, Vol. 27, Issue 5/6, pp. 553-572.
- Mario De Salvo, Dario Fasino, Domenico Freni, and Giovanni Lo Faro, Semihypergroups Obtained by Merging of 0-semigroups with Groups, Filomat 32(12) (2018), 4177-4194.
- P. Flajolet and B. Salvy, Euler sums and contour integral representations, Experimental Mathematics, 7(1) (1998), 15-35.
- D. Frank, C. D. Savage and J. A. Sellers, On the Number of Graphical Forest Partitions, Ars Combinatoria, Vol. 65 (2002), 33-37.
- D. Frank, C. D. Savage and J. A. Sellers, On the Number of Graphical Forest Partitions, preprint.
- Manosij Ghosh Dastidar and Sourav Sen Gupta, Generalization of a few results in Integer Partitions, arXiv preprint arXiv:1111.0094 [cs.DM], 2011.
- Petros Hadjicostas, Cyclic, Dihedral and Symmetrical Carlitz Compositions of a Positive Integer, Journal of Integer Sequences, 20 (2017), Article #17.8.5.
- Guo-Niu Han, Enumeration of Standard Puzzles, arXiv:2006.14070 [math.CO], 2020.
- Guo-Niu Han, Enumeration of Standard Puzzles [Cached copy]
- M. D. Hirschhorn, The number of 1's in the partitions of n, Fib. Quart., 51 (2013), 326-329.
- M. D. Hirschhorn, The number of different parts in the partitions of n, Fib. Quart., 52 (2014), 10-15. See p. 11. - _N. J. A. Sloane_, Mar 25 2014
- Nick Hobson, Solution to puzzle 56: Partition identity
- INRIA Algorithms Project, Encyclopedia of Combinatorial Structures 113.
- INRIA Algorithms Project, Encyclopedia of Combinatorial Structures 126.
- MathOverflow, Number of branches between two layers of the Young's lattice, Sep 19 2021.
- Mikhailov, S. V. On a realization of beta-expansion in QCD, J. High Energy Phys. 2017, No. 4, Paper No. 169, 16 p. (2017).
- M. M. Mogbonju, O. A. Ojo, and I. A. Ogunleke, Graphical Representation of Conjugacy Classes in the Order-Preserving Partial One-One Transformation Semigroup, International Journal of Science and Research (IJSR), 3(12) (2014), 711-721.
- G. Pfeiffer, Counting Transitive Relations, Journal of Integer Sequences, Vol. 7 (2004), Article 04.3.2.
- F. Ruskey, Combinatorial Object Server.
- Maria Schuld, Kamil Brádler, Robert Israel, Daiqin Su, and Brajesh Gupt, A quantum hardware-induced graph kernel based on Gaussian Boson Sampling, arXiv:1905.12646 [quant-ph], 2019.
- N. J. A. Sloane, Transforms
- I. J. Ugbene, E. O. Eze, and S. O. Makanjuola, On the Number of Conjugacy Classes in the Injective Order-Decreasing Transformation Semigroup, Pacific Journal of Science and Technology, 14(1) (2013), 182-186.
- Ifeanyichukwu Jeff Ugbene, Gatta Naimat Bakare, and Garba Risqot Ibrahim, Conjugacy classes of the order-preserving and order-decreasing partial one-to-one transformation semigroups, Journal of Science, Technology, Mathematics and Education (JOSTMED), 15(2) (2019), 83-88.
- Joseph Vandehey, Digital problems in the theory of partitions, Integers (2024) Vol. 24A, Art. No. A18. See p. 3.
- Eric Weisstein's World of Mathematics, Stanley's Theorem.
Cf.
A014153,
A024786,
A026794,
A026905,
A058884,
A093694,
A133735,
A137633,
A010815,
A027293,
A035363,
A028310,
A000712,
A000990.
-
List([0..45],n->Sum([0..n],k->NrPartitions(k))); # Muniru A Asiru, Jul 25 2018
-
a000070 = p a028310_list where
p _ 0 = 1
p ks'@(k:ks) m = if m < k then 0 else p ks' (m - k) + p ks m
-- Reinhard Zumkeller, Nov 06 2012
-
with(combinat): a:=n->add(numbpart(j),j=0..n): seq(a(n), n=0..44); # Zerinvary Lajos, Aug 26 2008
-
CoefficientList[ Series[1/(1 - x)*Product[1/(1 - x^k), {k, 75}], {x, 0, 45}], x] (* Robert G. Wilson v, Jul 13 2004 *)
Table[ Count[ Flatten@ IntegerPartitions@ n, 1], {n, 45}] (* Robert G. Wilson v, Aug 06 2008 *)
Join[{1}, Accumulate[PartitionsP[Range[50]]]+1] (* _Harvey P. Dale, Mar 12 2013 *)
a[ n_] := SeriesCoefficient[ 1 / (1 - x) / QPochhammer[ x], {x, 0, n}]; (* Michael Somos, Nov 09 2013 *)
Accumulate[PartitionsP[Range[0,49]]] (* George Beck, Oct 23 2014; typo fixed by Virgile Andreani, Jul 10 2016 *)
-
{a(n) = if( n<0, 0, polcoeff( 1 / prod(m=1, n, 1 - x^m, 1 + x * O(x^n)) / (1 - x), n))}; /* Michael Somos, Nov 08 2002 */
-
x='x+O('x^66); Vec(1/((1-x)*eta(x))) /* Joerg Arndt, May 15 2011 */
-
a(n) = sum(k=0, n, numbpart(k)); \\ Michel Marcus, Sep 16 2016
-
from itertools import accumulate
def A000070iter(n):
L = [0]*n; L[0] = 1
def numpart(n):
S = 0; J = n-1; k = 2
while 0 <= J:
T = L[J]
S = S+T if (k//2)%2 else S-T
J -= k if (k)%2 else k//2
k += 1
return S
for j in range(1, n): L[j] = numpart(j)
return accumulate(L)
print(list(A000070iter(100))) # Peter Luschny, Aug 30 2019
-
# Using function A365676Row. Compare also A365675.
from itertools import accumulate
def A000070List(size: int) -> list[int]:
return [sum(accumulate(reversed(A365676Row(n)))) for n in range(size)]
print(A000070List(45)) # Peter Luschny, Sep 16 2023
-
def A000070_list(leng):
p = [number_of_partitions(n) for n in range(leng)]
return [add(p[:k+1]) for k in range(leng)]
A000070_list(45) # Peter Luschny, Sep 15 2014
A135010
Triangle read by rows in which row n lists A000041(n-1) 1's followed by the list of juxtaposed lexicographically ordered partitions of n that do not contain 1 as a part.
Original entry on oeis.org
1, 1, 2, 1, 1, 3, 1, 1, 1, 2, 2, 4, 1, 1, 1, 1, 1, 2, 3, 5, 1, 1, 1, 1, 1, 1, 1, 2, 2, 2, 2, 4, 3, 3, 6, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 2, 2, 3, 2, 5, 3, 4, 7, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 2, 2, 2, 2, 2, 2, 4, 2, 3, 3, 2, 6, 3, 5, 4, 4, 8, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1
Offset: 1
Triangle begins:
[1];
[1],[2];
[1],[1],[3];
[1],[1],[1],[2,2],[4];
[1],[1],[1],[1],[1],[2,3],[5];
[1],[1],[1],[1],[1],[1],[1],[2,2,2],[2,4],[3,3],[6];
...
From _Omar E. Pol_, Sep 03 2013: (Start)
Illustration of initial terms (n = 1..6). The table shows the six sections of the set of partitions of 6 in three ways. Note that before the dissection, the set of partitions was in the ordering mentioned in A026791. More generally, the six sections of the set of partitions of 6 also can be interpreted as the first six sections of the set of partitions of any integer >= 6.
---------------------------------------------------------
n j Diagram Parts Parts
---------------------------------------------------------
. _
1 1 |_| 1; 1;
. _
2 1 | |_ 1, 1,
2 2 |_ _| 2; 2;
. _
3 1 | | 1, 1,
3 2 | |_ _ 1, 1,
3 3 |_ _ _| 3; 3;
. _
4 1 | | 1, 1,
4 2 | | 1, 1,
4 3 | |_ _ _ 1, 1,
4 4 | |_ _| 2,2, 2,2,
4 5 |_ _ _ _| 4; 4;
. _
5 1 | | 1, 1,
5 2 | | 1, 1,
5 3 | | 1, 1,
5 4 | | 1, 1,
5 5 | |_ _ _ _ 1, 1,
5 6 | |_ _ _| 2,3, 2,3,
5 7 |_ _ _ _ _| 5; 5;
. _
6 1 | | 1, 1,
6 2 | | 1, 1,
6 3 | | 1, 1,
6 4 | | 1, 1,
6 5 | | 1, 1,
6 6 | | 1, 1,
6 7 | |_ _ _ _ _ 1, 1,
6 8 | | |_ _| 2,2,2, 2,2,2,
6 9 | |_ _ _ _| 2,4, 2,4,
6 10 | |_ _ _| 3,3, 3,3,
6 11 |_ _ _ _ _ _| 6; 6;
...
(End)
Cf.
A000041,
A026791,
A138121,
A141285,
A182703,
A187219,
A193870,
A194446,
A206437,
A207031,
A207383,
A207379,
A211009.
-
with(combinat):
T:= proc(m) local b, ll;
b:= proc(n, i, l)
if n=0 then ll:=ll, l[]
else seq(b(n-j, j, [l[], j]), j=i..n)
fi
end;
ll:= NULL; b(m, 2, []); [1$numbpart(m-1)][], ll
end:
seq(T(n), n=1..10); # Alois P. Heinz, Feb 19 2012
-
less[run1_, run2_] := (lg1 = run1 // Length; lg2 = run2 // Length; lg = Max[lg1, lg2]; r1 = If[lg1 == lg, run1, PadRight[run1, lg, 0]]; r2 = If[lg2 == lg, run2, PadRight[run2, lg, 0]]; Order[r1, r2] != -1); row[n_] := Join[ Array[1 &, {PartitionsP[n - 1]}], Sort[ Reverse /@ Select[ IntegerPartitions[n], FreeQ[#, 1] &], less] ] // Flatten; Table[row[n], {n, 1, 9}] // Flatten (* Jean-François Alcover, Jan 14 2013 *)
Table[Reverse@ConstantArray[{1}, PartitionsP[n - 1]]~Join~
DeleteCases[Sort@PadRight[Reverse/@Cases[IntegerPartitions[n], x_ /; Last[x] != 1]], x_ /; x == 0, 2], {n, 1, 9}] // Flatten (* Robert Price, May 12 2020 *)
A215366
Triangle T(n,k) read by rows in which n-th row lists in increasing order all partitions lambda of n encoded as Product_{i in lambda} prime(i); n>=0, 1<=k<=A000041(n).
Original entry on oeis.org
1, 2, 3, 4, 5, 6, 8, 7, 9, 10, 12, 16, 11, 14, 15, 18, 20, 24, 32, 13, 21, 22, 25, 27, 28, 30, 36, 40, 48, 64, 17, 26, 33, 35, 42, 44, 45, 50, 54, 56, 60, 72, 80, 96, 128, 19, 34, 39, 49, 52, 55, 63, 66, 70, 75, 81, 84, 88, 90, 100, 108, 112, 120, 144, 160, 192, 256
Offset: 0
The partitions of n=3 are {[3], [2,1], [1,1,1]}, encodings give {prime(3), prime(2)*prime(1), prime(1)^3} = {5, 3*2, 2^3} => row 3 = [5, 6, 8].
For n=0 the empty partition [] gives the empty product 1.
Triangle T(n,k) begins:
1;
2;
3, 4;
5, 6, 8;
7, 9, 10, 12, 16;
11, 14, 15, 18, 20, 24, 32;
13, 21, 22, 25, 27, 28, 30, 36, 40, 48, 64;
17, 26, 33, 35, 42, 44, 45, 50, 54, 56, 60, 72, 80, 96, 128;
...
Corresponding triangle of integer partitions begins:
();
1;
2, 11;
3, 21, 111;
4, 22, 31, 211, 1111;
5, 41, 32, 221, 311, 2111, 11111;
6, 42, 51, 33, 222, 411, 321, 2211, 3111, 21111, 111111;
7, 61, 52, 43, 421, 511, 322, 331, 2221, 4111, 3211, 22111, 31111, 211111, 1111111; - _Gus Wiseman_, Dec 12 2016
Last elements of rows give:
A000079.
Second to last elements of rows give:
A007283(n-2) for n>1.
LCM of terms in row n gives
A138534(n).
-
b:= proc(n, i) option remember; `if`(n=0 or i<2, [2^n],
[seq(map(p->p*ithprime(i)^j, b(n-i*j, i-1))[], j=0..n/i)])
end:
T:= n-> sort(b(n, n))[]:
seq(T(n), n=0..10);
# (2nd Maple program)
with(combinat): A := proc (n) local P, A, i: P := partition(n): A := {}; for i to nops(P) do A := `union`(A, {mul(ithprime(P[i][j]), j = 1 .. nops(P[i]))}) end do: A end proc; # the command A(m) yields row m. # Emeric Deutsch, Jan 23 2016
# (3rd Maple program)
q:= 7: S[0] := {1}: for m to q do S[m] := `union`(seq(map(proc (f) options operator, arrow: ithprime(j)*f end proc, S[m-j]), j = 1 .. m)) end do; # for a given positive integer q, the program yields rows 0, 1, 2,...,q. # Emeric Deutsch, Jan 23 2016
-
b[n_, i_] := b[n, i] = If[n == 0 || i<2, {2^n}, Table[Function[#*Prime[i]^j] /@ b[n - i*j, i-1], {j, 0, n/i}] // Flatten]; T[n_] := Sort[b[n, n]]; Table[T[n], {n, 0, 10}] // Flatten (* Jean-François Alcover, Mar 12 2015, after Alois P. Heinz *)
nn=7;HeinzPartition[n_]:=If[n===1,{},Flatten[Cases[FactorInteger[n],{p_,k_}:>Table[PrimePi[p],{k}]]]//Reverse];
Take[GatherBy[Range[2^nn],Composition[Total,HeinzPartition]],nn+1] (* Gus Wiseman, Dec 12 2016 *)
Table[Map[Times @@ Prime@ # &, IntegerPartitions[n]], {n, 0, 8}] // Flatten (* Michael De Vlieger, Jul 12 2017 *)
-
\\ From M. F. Hasler, Dec 06 2016 (Start)
A215366_row(n)=vecsort([vecprod([prime(p)|p<-P])|P<-partitions(n)]) \\ bug fix & syntax update by M. F. Hasler, Oct 20 2023
A215366_vec(N)=concat(apply(A215366_row,[0..N])) \\ "flattened" rows 0..N (End)
A138121
Triangle read by rows in which row n lists the partitions of n that do not contain 1 as a part in juxtaposed reverse-lexicographical order followed by A000041(n-1) 1's.
Original entry on oeis.org
1, 2, 1, 3, 1, 1, 4, 2, 2, 1, 1, 1, 5, 3, 2, 1, 1, 1, 1, 1, 6, 3, 3, 4, 2, 2, 2, 2, 1, 1, 1, 1, 1, 1, 1, 7, 4, 3, 5, 2, 3, 2, 2, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 8, 4, 4, 5, 3, 6, 2, 3, 3, 2, 4, 2, 2, 2, 2, 2, 2, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 9, 5, 4, 6, 3, 3, 3, 3, 7, 2, 4, 3, 2, 5, 2, 2, 3, 2, 2
Offset: 1
Triangle begins:
[1];
[2],[1];
[3],[1],[1];
[4],[2,2],[1],[1],[1];
[5],[3,2],[1],[1],[1],[1],[1];
[6],[3,3],[4,2],[2,2,2],[1],[1],[1],[1],[1],[1],[1];
[7],[4,3],[5,2],[3,2,2],[1],[1],[1],[1],[1],[1],[1],[1],[1],[1],[1];
...
The illustration of the three views of the section model of partitions (version "tree" with seven sections) shows the connection between several sequences.
---------------------------------------------------------
Partitions A194805 Table 1.0
. of 7 p(n) A194551 A135010
---------------------------------------------------------
7 15 7 7 . . . . . .
4+3 4 4 . . . 3 . .
5+2 5 5 . . . . 2 .
3+2+2 3 3 . . 2 . 2 .
6+1 11 6 1 6 . . . . . 1
3+3+1 3 1 3 . . 3 . . 1
4+2+1 4 1 4 . . . 2 . 1
2+2+2+1 2 1 2 . 2 . 2 . 1
5+1+1 7 1 5 5 . . . . 1 1
3+2+1+1 1 3 3 . . 2 . 1 1
4+1+1+1 5 4 1 4 . . . 1 1 1
2+2+1+1+1 2 1 2 . 2 . 1 1 1
3+1+1+1+1 3 1 3 3 . . 1 1 1 1
2+1+1+1+1+1 2 2 1 2 . 1 1 1 1 1
1+1+1+1+1+1+1 1 1 1 1 1 1 1 1 1
. 1 ---------------
. *<------- A000041 -------> 1 1 2 3 5 7 11
. A182712 -------> 1 0 2 1 4 3
. A182713 -------> 1 0 1 2 2
. A182714 -------> 1 0 1 1
. 1 0 1
. A141285 A182703 1 0
. A182730 A182731 1
---------------------------------------------------------
. A138137 --> 1 2 3 6 9 15..
---------------------------------------------------------
. A182746 <--- 4 . 2 1 0 1 2 . 4 ---> A182747
---------------------------------------------------------
.
. A182732 <--- 6 3 4 2 1 3 5 4 7 ---> A182733
. . . . . 1 . . . .
. . . . 2 1 . . . .
. . 3 . . 1 2 . . .
. Table 2.0 . . 2 2 1 . . 3 . Table 2.1
. . . . . 1 2 2 . .
. 1 . . . .
.
. A182982 A182742 A194803 A182983 A182743
. A182992 A182994 A194804 A182993 A182995
---------------------------------------------------------
.
From _Omar E. Pol_, Sep 03 2013: (Start)
Illustration of initial terms (n = 1..6). The table shows the six sections of the set of partitions of 6. Note that before the dissection the set of partitions was in the ordering mentioned in A026792. More generally, the six sections of the set of partitions of 6 also can be interpreted as the first six sections of the set of partitions of any integer >= 6.
Illustration of initial terms:
---------------------------------------
n j Diagram Parts
---------------------------------------
. _
1 1 |_| 1;
. _ _
2 1 |_ | 2,
2 2 |_| . 1;
. _ _ _
3 1 |_ _ | 3,
3 2 | | . 1,
3 3 |_| . . 1;
. _ _ _ _
4 1 |_ _ | 4,
4 2 |_ _|_ | 2, 2,
4 3 | | . 1,
4 4 | | . . 1,
4 5 |_| . . . 1;
. _ _ _ _ _
5 1 |_ _ _ | 5,
5 2 |_ _ _|_ | 3, 2,
5 3 | | . 1,
5 4 | | . . 1,
5 5 | | . . 1,
5 6 | | . . . 1,
5 7 |_| . . . . 1;
. _ _ _ _ _ _
6 1 |_ _ _ | 6,
6 2 |_ _ _|_ | 3, 3,
6 3 |_ _ | | 4, 2,
6 4 |_ _|_ _|_ | 2, 2, 2,
6 5 | | . 1,
6 6 | | . . 1,
6 7 | | . . 1,
6 8 | | . . . 1,
6 9 | | . . . 1,
6 10 | | . . . . 1,
6 11 |_| . . . . . 1;
...
(End)
-
less[run1_, run2_] := (lg1 = run1 // Length; lg2 = run2 // Length; lg = Max[lg1, lg2]; r1 = If[lg1 == lg, run1, PadRight[run1, lg, 0]]; r2 = If[lg2 == lg, run2, PadRight[run2, lg, 0]]; Order[r1, r2] != -1); row[n_] := Join[Array[1 &, {PartitionsP[n - 1]}], Sort[Reverse /@ Select[IntegerPartitions[n], FreeQ[#, 1] &], less]] // Flatten // Reverse; Table[row[n], {n, 1, 9}] // Flatten (* Jean-François Alcover, Jan 15 2013 *)
Table[Reverse/@Reverse@DeleteCases[Sort@PadRight[Reverse/@Cases[IntegerPartitions[n], x_ /; Last[x]!=1]], x_ /; x==0, 2]~Join~ConstantArray[{1}, PartitionsP[n - 1]], {n, 1, 9}] // Flatten (* Robert Price, May 11 2020 *)
A206437
Triangle read by rows: T(j,k) is the k-th part of the j-th region of the set of partitions of n, if 1 <= j <= A000041(n).
Original entry on oeis.org
1, 2, 1, 3, 1, 1, 2, 4, 2, 1, 1, 1, 3, 5, 2, 1, 1, 1, 1, 1, 2, 4, 2, 3, 6, 3, 2, 2, 1, 1, 1, 1, 1, 1, 1, 3, 5, 2, 4, 7, 3, 2, 2, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 2, 4, 2, 3, 6, 3, 2, 2, 5, 4, 8, 4, 3, 2, 2, 2, 2, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1
Offset: 1
-------------------------------------------
Region j Triangle of parts
-------------------------------------------
1 1;
2 2,1;
3 3,1,1;
4 2;
5 4,2,1,1,1;
6 3;
7 5,2,1,1,1,1,1;
8 2;
9 4,2;
10 3;
11 6,3,2,2,1,1,1,1,1,1,1;
12 3;
13 5,2;
14 4;
15 7,3,2,2,1,1,1,1,1,1,1,1,1,1,1;
.
The rotated triangle shows each row as a partition:
7
4 3
5 2
3 2 2
6 1
3 3 1
4 2 1
2 2 2 1
5 1 1
3 2 1 1
4 1 1 1
2 2 1 1 1
3 1 1 1 1
2 1 1 1 1 1
1 1 1 1 1 1 1
.
Alternative interpretation of this sequence:
Triangle read by rows in which row r lists the parts of the last section of the set of partitions of r ordered by regions (see comments):
[1];
[2,1];
[3,1,1];
[2],[4,2,1,1,1];
[3],[5,2,1,1,1,1,1];
[2],[4,2],[3],[6,3,2,2,1,1,1,1,1,1,1];
[3],[5,2],[4],[7,3,2,2,1,1,1,1,1,1,1,1,1,1,1];
- Robert Price, Table of n, a(n) for n = 1..321, first 75 regions.
- Omar E. Pol, Illustration of the seven regions of 5
- Omar E. Pol, Illustration of initial terms, regions = 1..77 (2D view)
- Omar E. Pol, Illustration of initial terms, regions = 1..30 (3D view)
- Omar E. Pol, Visualization of regions in a diagram for A006128
- Robert Price, Mathematica program to draw diagram up to n=28
Cf.
A000041,
A046746,
A135010,
A138121,
A182699,
A182703,
A182709,
A183152,
A186114,
A187219,
A194436-
A194439,
A194447,
A194448,
A196025,
A198381.
-
lex[n_]:=DeleteCases[Sort@PadRight[Reverse /@ IntegerPartitions@n], x_ /; x==0, 2];
reg = {}; l = {};
For[j = 1, j <= 22, j++,
mx = Max@lex[j][[j]]; AppendTo[l, mx];
For[i = j, i > 0, i--, If[l[[i]] > mx, Break[]]];
AppendTo[reg, Take[Reverse[First /@ lex[mx]], j - i]];
];
Flatten@reg (* Robert Price, Apr 21 2020, revised Jul 24 2020 *)
Further edited by
Omar E. Pol, Mar 31 2012, Jan 27 2013
A141285
Largest part of the n-th partition of j in the list of colexicographically ordered partitions of j, if 1 <= n <= A000041(j).
Original entry on oeis.org
1, 2, 3, 2, 4, 3, 5, 2, 4, 3, 6, 3, 5, 4, 7, 2, 4, 3, 6, 5, 4, 8, 3, 5, 4, 7, 3, 6, 5, 9, 2, 4, 3, 6, 5, 4, 8, 4, 7, 6, 5, 10, 3, 5, 4, 7, 3, 6, 5, 9, 5, 4, 8, 7, 6, 11, 2, 4, 3, 6, 5, 4, 8, 4, 7, 6, 5, 10, 3, 6, 5, 9, 4, 8, 7, 6, 12
Offset: 1
Written as a triangle T(j,k) the sequence begins:
1;
2;
3;
2, 4;
3, 5;
2, 4, 3, 6;
3, 5, 4, 7;
2, 4, 3, 6, 5, 4, 8;
3, 5, 4, 7, 3, 6, 5, 9;
2, 4, 3, 6, 5, 4, 8, 4, 7, 6, 5, 10;
3, 5, 4, 7, 3, 6, 5, 9, 5, 4, 8, 7, 6, 11;
...
------------------------------------------
n A000041 a(n)
------------------------------------------
1 = p(1) 1
2 = p(2) 2 .
3 = p(3) . 3
4 2 .
5 = p(4) 4 .
6 . 3
7 = p(5) . 5
8 2 .
9 4 .
10 3 .
11 = p(6) 6 .
12 . 3
13 . 5
14 . 4
15 = p(7) . 7
...
From _Omar E. Pol_, Aug 22 2013: (Start)
Illustration of initial terms (n = 1..11) in three ways: as the largest parts of the partitions of 6 (see A026792), also as the largest parts of the regions of the diagram, also as the diagonal of triangle. By definition of "region" the largest part of the n-th region is also the largest part of the n-th partition (see below):
--------------------------------------------------------
. Diagram Triangle in which
Partitions of regions rows are partitions
of 6 and partitions and columns are regions
--------------------------------------------------------
. _ _ _ _ _ _
6 _ _ _ | 6
3+3 _ _ _|_ | 3 3
4+2 _ _ | | 4 2
2+2+2 _ _|_ _|_ | 2 2 2
5+1 _ _ _ | | 5 1
3+2+1 _ _ _|_ | | 3 1 1
4+1+1 _ _ | | | 4 1 1
2+2+1+1 _ _|_ | | | 2 2 1 1
3+1+1+1 _ _ | | | | 3 1 1 1
2+1+1+1+1 _ | | | | | 2 1 1 1 1
1+1+1+1+1+1 | | | | | | 1 1 1 1 1 1
...
The equivalent sequence for compositions is A001511. Explanation: for the positive integer j the diagram of regions of the set of compositions of j has 2^(j-1) regions. The largest part of the n-th region is A001511(n). The number of parts is A006519(n). On the other hand the diagram of regions of the set of partitions of j has A000041(j) regions. The largest part of the n-th region is a(n) = A001511(A228354(n)). The number of parts is A194446(n). Both diagrams have j sections. The diagram for partitions can be interpreted as one of the three views of a three dimensional diagram of compositions in which the rows of partitions are in orthogonal direction to the rest. For the first five sections of the diagrams see below:
--------------------------------------------------------
. Diagram Diagram
. of regions of regions
. and compositions and partitions
---------------------------------------------------------
. j = 1 2 3 4 5 j = 1 2 3 4 5
---------------------------------------------------------
n A001511 A228354 a(n)
---------------------------------------------------------
1 1 _| | | | | ............ 1 1 _| | | | |
2 2 _ _| | | | ............ 2 2 _ _| | | |
3 1 _| | | | ......... 4 3 _ _ _| | |
4 3 _ _ _| | | ../ ....... 6 2 _ _| | |
5 1 _| | | | / ....... 8 4 _ _ _ _| |
6 2 _ _| | | ../ / .... 12 3 _ _ _| |
7 1 _| | | / / . 16 5 _ _ _ _ _|
8 4 _ _ _ _| | ../ / /
9 1 _| | | | / /
10 2 _ _| | | / /
11 1 _| | | / /
12 3 _ _ _| | ../ /
13 1 _| | | /
14 2 _ _| | /
15 1 _| | /
16 5 _ _ _ _ _| ../
...
Also we can draw an infinite Dyck path in which the n-th odd-indexed line segment has a(n) up-steps and the n-th even-indexed line segment has A194446(n) down-steps. Note that the height of the n-th largest peak between two successive valleys at height 0 is also the partition number A000041(n). See below:
. 5
. /\ 3
. 4 / \ 4 /\
. /\ / \ /\ /
. 3 / \ 3 / \ / \/
. 2 /\ 2 / \ /\/ \ 2 /
. 1 /\ / \ /\/ \ / \ /\/
. /\/ \/ \/ \/ \/
.
.(End)
Cf.
A000041,
A135010,
A182730,
A182731,
A182732,
A182733,
A182982,
A182983,
A182703,
A193870,
A194446,
A194447,
A194550,
A206437,
A210979,
A210980,
A211978,
A220517,
A225600,
A225610.
-
Last/@DeleteCases[DeleteCases[Sort@PadRight[Reverse/@IntegerPartitions[13]], x_ /; x == 0, 2], {}] (* updated _Robert Price, May 15 2020 *)
Better definition and edited by
Omar E. Pol, Oct 17 2013
A194446
Number of parts in the n-th region of the set of partitions of j, if 1<=n<=A000041(j).
Original entry on oeis.org
1, 2, 3, 1, 5, 1, 7, 1, 2, 1, 11, 1, 2, 1, 15, 1, 2, 1, 4, 1, 1, 22, 1, 2, 1, 4, 1, 2, 1, 30, 1, 2, 1, 4, 1, 1, 7, 1, 2, 1, 1, 42, 1, 2, 1, 4, 1, 2, 1, 8, 1, 1, 3, 1, 1, 56, 1, 2, 1, 4, 1, 1, 7, 1, 2, 1, 1, 12, 1, 2, 1, 4, 1, 2, 1, 1, 77, 1, 2, 1
Offset: 1
Written as an irregular triangle the sequence begins:
1;
2;
3;
1, 5;
1, 7;
1, 2, 1, 11;
1, 2, 1, 15;
1, 2, 1, 4, 1, 1, 22;
1, 2, 1, 4, 1, 2, 1, 30;
1, 2, 1, 4, 1, 1, 7, 1, 2, 1, 1, 42;
1, 2, 1, 4, 1, 2, 1, 8, 1, 1, 3, 1, 1, 56;
1, 2, 1, 4, 1, 1, 7, 1, 2, 1, 1, 12, 1, 2, 1, 4, 1, 2, 1, 1, 77;
...
From _Omar E. Pol_, Aug 18 2013: (Start)
Illustration of initial terms (first seven regions):
. _ _ _ _ _
. _ _ _ |_ _ _ _ _|
. _ _ _ _ |_ _ _| |_ _|
. _ _ |_ _ _ _| |_|
. _ _ _ |_ _| |_ _| |_|
. _ _ |_ _ _| |_| |_|
. _ |_ _| |_| |_| |_|
. |_| |_| |_| |_| |_|
.
. 1 2 3 1 5 1 7
.
The next figure shows a minimalist diagram of the first seven regions. The n-th horizontal line segment has length A141285(n). a(n) is the length of the n-th vertical line segment, which is the vertical line segment ending in row n (see also A225610).
. _ _ _ _ _
. 7 _ _ _ |
. 6 _ _ _|_ |
. 5 _ _ | |
. 4 _ _|_ | |
. 3 _ _ | | |
. 2 _ | | | |
. 1 | | | | |
.
. 1 2 3 4 5
.
Illustration of initial terms from an infinite Dyck path in which the length of the n-th ascendent line segment is A141285(n). a(n) is the length of the n-th descendent line segment.
. /\
. / \
. /\ / \
. / \ / \
. /\ / \ /\/ \
. /\ / \ /\/ \ / 1 \
. /\/ \/ \/ 1 \/ \
. 1 2 3 5 7
.
(End)
Cf.
A002865,
A006128,
A135010,
A138121,
A186114,
A186412,
A193870,
A194436,
A194437,
A194438,
A194439,
A194447.
-
lex[n_]:=DeleteCases[Sort@PadRight[Reverse /@ IntegerPartitions@n], x_ /; x==0,2];
A194446 = {}; l = {};
For[j = 1, j <= 30, j++,
mx = Max@lex[j][[j]]; AppendTo[l, mx];
For[i = j, i > 0, i--, If[l[[i]] > mx, Break[]]];
AppendTo[A194446, j - i];
];
A194446 (* Robert Price, Jul 25 2020 *)
A026905
Partial sums of the partition numbers A000041 of the positive integers.
Original entry on oeis.org
1, 3, 6, 11, 18, 29, 44, 66, 96, 138, 194, 271, 372, 507, 683, 914, 1211, 1596, 2086, 2713, 3505, 4507, 5762, 7337, 9295, 11731, 14741, 18459, 23024, 28628, 35470, 43819, 53962, 66272, 81155, 99132, 120769, 146784, 177969, 215307, 259890, 313064, 376325, 451500
Offset: 1
- Riccardo Aragona, Roberto Civino, and Norberto Gavioli, An ultimately periodic chain in the integral Lie ring of partitions, J. Algebr. Comb. (2024). See p. 11.
- Thomas M. A. Fink, Emmanuel Barillot, and Sebastian E. Ahnert, Dynamics of network motifs, 2006.
- Ricardo Gómez Aíza, Trees with flowers: A catalog of integer partition and integer composition trees with their asymptotic analysis, arXiv:2402.16111 [math.CO], 2024. See p. 23.
- INRIA Algorithms Project, Encyclopedia of Combinatorial Structures 800
-
a:= n-> add(combinat[numbpart](k), k=1..n): seq(a(n), n=1..44); # Zerinvary Lajos, Jun 01 2008
-
Table[ Sum[ PartitionsP[k], {k, 1, n}], {n, 1, 45}]
(* or: *)
PartitionsP[Range[45]] // Accumulate (* Jean-François Alcover, Jun 19 2019 *)
CoefficientList[Series[(QPochhammer[x] - 1)/(x (x - 1) QPochhammer[x]), {x, 0, 20}], x] (* Eric W. Weisstein, Apr 29 2022 *)
-
a(n) = sum(k=1, n, numbpart(k)); \\ Michel Marcus, Jul 19 2023
-
from sympy import partition
def A026905(n): return sum(partition(k) for k in range(1,n+1)) # Chai Wah Wu, Nov 23 2024
A047968
a(n) = Sum_{d|n} p(d), where p(d) = A000041 = number of partitions of d.
Original entry on oeis.org
1, 3, 4, 8, 8, 17, 16, 30, 34, 52, 57, 99, 102, 153, 187, 261, 298, 432, 491, 684, 811, 1061, 1256, 1696, 1966, 2540, 3044, 3876, 4566, 5846, 6843, 8610, 10203, 12610, 14906, 18491, 21638, 26508, 31290, 38044, 44584, 54133, 63262, 76241
Offset: 1
For n = 10 the divisors of 10 are 1, 2, 5, 10, hence the partition numbers of the divisors of 10 are 1, 2, 7, 42, so a(10) = 1 + 2 + 7 + 42 = 52. - _Omar E. Pol_, Feb 26 2014
From _Gus Wiseman_, Sep 16 2018: (Start)
The a(6) = 17 constant multiset partitions:
(111111) (111)(111) (11)(11)(11) (1)(1)(1)(1)(1)(1)
(111222) (12)(12)(12)
(111122) (112)(112)
(112233) (123)(123)
(111112)
(111123)
(111223)
(111234)
(112234)
(112345)
(123456)
(End)
-
with(combinat): with(numtheory): a := proc(n) c := 0: l := sort(convert(divisors(n), list)): for i from 1 to nops(l) do c := c+numbpart(l[i]) od: RETURN(c): end: for j from 1 to 60 do printf(`%d, `, a(j)) od: # Zerinvary Lajos, Apr 14 2007
-
a[n_] := Sum[ PartitionsP[d], {d, Divisors[n]}]; Table[a[n], {n, 1, 44}] (* Jean-François Alcover, Oct 03 2013 *)
A046063
Numbers k such that the k-th partition number A000041(k) is prime.
Original entry on oeis.org
2, 3, 4, 5, 6, 13, 36, 77, 132, 157, 168, 186, 188, 212, 216, 302, 366, 417, 440, 491, 498, 525, 546, 658, 735, 753, 825, 841, 863, 1085, 1086, 1296, 1477, 1578, 1586, 1621, 1793, 2051, 2136, 2493, 2502, 2508, 2568, 2633, 2727, 2732, 2871, 2912, 3027, 3098, 3168, 3342, 3542, 3641, 4118
Offset: 1
- Max Alekseyev, Table of n, a(n) for n = 1..4967 (contains all terms below 10^8)
- Chris K. Caldwell, Top twenty prime partition numbers, The Prime Pages.
- G. P. Michon, Table of partition function p(n) (n=0 through 4096)
- G. K. Patil, Ramanujan's Life And His Contributions In The Field Of Mathematics, International Journal of Scientific Research and Engineering Studies (IJSRES), Volume 1(6) (2014), ISSN: 2349-8862.
- Eric Weisstein's World of Mathematics, Partition Function P Congruences.
- Eric Weisstein's World of Mathematics, Partition Function P.
- Eric Weisstein's World of Mathematics, Integer Sequence Primes.
Cf.
A000041,
A035359,
A049575,
A051143,
A111036,
A111045,
A114165,
A111389,
A113499,
A114166,
A114167,
A114168,
A114169,
A114170,
A115214.
-
Select[ Range@3341, PrimeQ@ PartitionsP@# &] (* Robert G. Wilson v *)
-
for(n=0,10^5,my(p=numbpart(n));if(isprime(p),print1(n,", "))); \\ Joerg Arndt, May 09 2013
-
from sympy import isprime, npartitions
print([n for n in range(1, 5001) if isprime(npartitions(n))]) # Indranil Ghosh, Apr 10 2017
b-file extended by
Max Alekseyev, Jul 07 2009, Jun 14 2011, Jan 08 2012, May 19 2014
Showing 1-10 of 3895 results.
Comments