cp's OEIS Frontend

This is a front-end for the Online Encyclopedia of Integer Sequences, made by Christian Perfect. The idea is to provide OEIS entries in non-ancient HTML, and then to think about how they're presented visually. The source code is on GitHub.

Showing 1-3 of 3 results.

A296045 a(n) = [x^n] Product_{k>=1} ((1 + x^(2*k-1))/(1 - x^(2*k)))^n.

Original entry on oeis.org

1, 1, 3, 13, 55, 231, 981, 4222, 18351, 80320, 353453, 1562364, 6932185, 30856541, 137725710, 616190583, 2762605791, 12408541299, 55825435656, 251523510045, 1134741006825, 5125453110196, 23175983361270, 104899547541255, 475228898015025, 2154737528486881, 9777332125043577
Offset: 0

Views

Author

Ilya Gutkovskiy, Dec 03 2017

Keywords

Crossrefs

Programs

  • Mathematica
    Table[SeriesCoefficient[Product[((1 + x^(2 k - 1))/(1 - x^(2 k)))^n, {k, 1, n}], {x, 0, n}], {n, 0, 26}]
    Table[SeriesCoefficient[Product[((1 + x^k)/(1 - x^(4 k)))^n, {k, 1, n}], {x, 0, n}], {n, 0, 26}]
    Table[SeriesCoefficient[(2 (-x)^(1/8)/EllipticTheta[2, 0, Sqrt[-x]])^n, {x, 0, n}], {n, 0, 26}]
    Table[(-1)^n * 2^n * SeriesCoefficient[1/(QPochhammer[-1, x]*QPochhammer[x^2])^n, {x, 0, n}], {n, 0, 30}] (* Vaclav Kotesovec, Oct 07 2020 *)
    (* Calculation of constants {d,c}: *) Chop[{1/r, 4/Sqrt[Pi*(77/2 - 4*s*(-r*s)^(7/8) * Derivative[0, 0, 2][EllipticTheta][2, 0, Sqrt[-r*s]])]} /. FindRoot[{s == (2*(-r*s)^(1/8))/EllipticTheta[2, 0, Sqrt[-r*s]], 7*I*r + 2*(-r*s)^(7/8)*Sqrt[r*s] * Derivative[0, 0, 1][EllipticTheta][2, 0, Sqrt[-r*s]] == 0}, {r, 1/5}, {s, 2}, WorkingPrecision -> 70]] (* Vaclav Kotesovec, Jan 17 2024 *)

Formula

a(n) = [x^n] Product_{k>=1} ((1 + x^k)/(1 - x^(4*k)))^n.
a(n) ~ c * d^n / sqrt(n), where d = 4.62579056836776492108784045382518984897... (see A192540) and c = 0.255113338880004277664416308115912337... - Vaclav Kotesovec, Dec 05 2017

A295832 Expansion of Product_{k>=1} ((1 + x^(2*k-1))/(1 - x^(2*k)))^k.

Original entry on oeis.org

1, 1, 1, 3, 5, 8, 12, 20, 33, 50, 74, 114, 175, 257, 375, 555, 814, 1171, 1677, 2406, 3435, 4855, 6825, 9591, 13428, 18667, 25851, 35745, 49250, 67544, 92340, 125966, 171345, 232257, 313945, 423470, 569778, 764465, 1023231, 1366827, 1821756, 2422394, 3214318, 4257088, 5627086, 7422941
Offset: 0

Views

Author

Ilya Gutkovskiy, Nov 28 2017

Keywords

Crossrefs

Programs

  • Mathematica
    nmax = 45; CoefficientList[Series[Product[((1 + x^(2 k - 1))/(1 - x^(2 k)))^k, {k, 1, nmax}], {x, 0, nmax}], x]
    nmax = 45; CoefficientList[Series[Exp[Sum[x^k ((-1)^(k + 1) + x^k)/(k (1 - x^(2 k))^2), {k, 1, nmax}]], {x, 0, nmax}], x]

Formula

G.f.: Product_{k>=1} ((1 + x^(2*k-1))/(1 - x^(2*k)))^k.
G.f.: exp(Sum_{k>=1} x^k*((-1)^(k+1) + x^k)/(k*(1 - x^(2*k))^2)).
a(n) ~ exp(3 * (7*Zeta(3))^(1/3) * n^(2/3) / 4 + Pi^2 * n^(1/3) / (24 * (7*Zeta(3))^(1/3)) - Pi^4 / (12096 * Zeta(3)) + 1/12) * (7*Zeta(3))^(7/36) / (A * 2^(23/24) * sqrt(3*Pi) * n^(25/36)), where A is the Glaisher-Kinkelin constant A074962. - Vaclav Kotesovec, Nov 28 2017

A273228 G.f. is the fourth power of the g.f. of A006950.

Original entry on oeis.org

1, 4, 10, 24, 55, 116, 230, 440, 819, 1480, 2602, 4480, 7580, 12604, 20620, 33272, 53029, 83520, 130088, 200600, 306488, 464168, 697150, 1039032, 1537435, 2259300, 3298428, 4785880, 6903657, 9903040, 14129846, 20058488, 28336790, 39845456, 55778050, 77747328, 107924347, 149221160
Offset: 0

Views

Author

M.S. Mahadeva Naika, May 18 2016

Keywords

Comments

Ramanujan theta functions: f(q) (see A121373), phi(q) (A000122), psi(q) (A010054), chi(q) (A000700).

Crossrefs

Programs

  • Maple
    Digits:=200:with(PolynomialTools): with(qseries): with(ListTools):
    GenFun:=series(etaq(q,2,1000)^4/etaq(q,1,1000)^4/etaq(q,4,1000)^4,q,50):
    CoefficientList(sort(convert(GenFun,polynom),q,ascending),q);
  • Mathematica
    nmax = 30; CoefficientList[Series[Product[(1 + x^k)^4 / (1 - x^(4*k))^4, {k, 1, nmax}], {x, 0, nmax}], x] (* Vaclav Kotesovec, Mar 25 2017 *)
    CoefficientList[Series[1/(QPochhammer[q, -q]*QPochhammer[q^2, q^2])^4, {q, 0, 50}], q] (* G. C. Greubel, Apr 17 2018 *)

Formula

G.f.: Product_{k>=1} (1 + x^k)^4 / (1 - x^(4*k))^4, corrected by Vaclav Kotesovec, Mar 25 2017
Expansion of 1 / psi(-x)^4 in powers of x where psi() is a Ramanujan theta function.
a(n) ~ exp(sqrt(2*n)*Pi) / (2^(9/4)*n^(7/4)). - Vaclav Kotesovec, Mar 25 2017

Extensions

Edited by N. J. A. Sloane, May 26 2016
Showing 1-3 of 3 results.