A143815
Let A(0)=1, B(0)=0 and C(0)=0. Let B(n+1) = Sum_{k = 0..n} binomial(n,k)*A(k), C(n+1) = Sum_{k = 0..n} binomial(n,k)*B(k) and A(n+1) = Sum_{k = 0..n} binomial(n,k)*C(k). This entry gives the sequence A(n).
Original entry on oeis.org
1, 0, 0, 1, 6, 25, 91, 322, 1232, 5672, 32202, 209143, 1432454, 9942517, 69363840, 490303335, 3565609732, 27118060170, 218183781871, 1861370544934, 16729411124821, 156706028787827, 1514442896327792, 14999698898942772, 151838974745743228, 1571513300578303070
Offset: 0
R(n) as a linear combination of R(i), i = 0..2.
==================================
R(n) | R(0) R(1) R(2)
==================================
R(3) | 1 -2 3
R(4) | 6 -5 7
R(5) | 25 -5 16
R(6) | 91 20 46
R(7) | 322 149 203
R(8) | 1232 552 1178
R(9) | 5672 991 7242
R(10) | 32202 -3799 43786
...
Column 2 of the above table is A143818.
R(n) as a linear combination of R(0),R(1) and R(2) - R(1).
=====================================
R(n) | R(0) R(1) R(2)-R(1)
=====================================
R(3) | 1 1 3
R(4) | 6 2 7
R(5) | 25 11 16
R(6) | 91 66 46
R(7) | 322 352 203
R(8) | 1232 1730 1178
R(9) | 5672 8233 7242
R(10) | 32202 39987 43786
...
Cf.
A000110,
A024429,
A024430,
A143628,
A143629,
A143630,
A143631,
A143816,
A143817,
A143818,
A143819,
A143820,
A143821.
-
# (1)
M:=24: a:=array(0..100): b:=array(0..100): c:=array(0..100):
a[0]:=1: b[0]:=0: c[0]:=0:
for n from 1 to M do
b[n]:=add(binomial(n-1,k)*a[k], k=0..n-1);
c[n]:=add(binomial(n-1,k)*b[k], k=0..n-1);
a[n]:=add(binomial(n-1,k)*c[k], k=0..n-1);
end do:
A143815:=[seq(a[n], n=0..M)];
# (2)
seq(add(Stirling2(n,3*i),i = 0..floor(n/3)), n = 0..24);
# third Maple program:
b:= proc(n, t) option remember; `if`(n=0, irem(t, 2),
add(b(n-j, irem(t+1, 3))*binomial(n-1, j-1), j=1..n))
end:
a:= n-> b(n, 1):
seq(a(n), n=0..25); # Alois P. Heinz, Feb 20 2018
-
a = Exp[x] - 1; f[x_] := 1/3 (E^x + 2 E^(-x/2) Cos[(Sqrt[3] x)/2]); CoefficientList[Series[f[a], {x, 0, 25}], x]*Table[n!, {n, 0, 25}] (* Geoffrey Critzer, Mar 05 2010 *)
-
Bell_poly(n, x) = exp(-x)*suminf(k=0, k^n*x^k/k!);
a(n) = my(w=(-1+sqrt(3)*I)/2); round(Bell_poly(n, 1)+Bell_poly(n, w)+Bell_poly(n, w^2))/3; \\ Seiichi Manyama, Oct 13 2022
A121867
Let A(0) = 1, B(0) = 0; A(n+1) = Sum_{k=0..n} binomial(n,k)*B(k), B(n+1) = Sum_{k=0..n} -binomial(n,k)*A(k); entry gives A sequence (cf. A121868).
Original entry on oeis.org
1, 0, -1, -3, -6, -5, 33, 266, 1309, 4905, 11516, -22935, -556875, -4932512, -32889885, -174282151, -612400262, 907955295, 45283256165, 573855673458, 5397236838345, 41604258561397, 250231901787780, 756793798761989, -8425656230853383, -213091420659985440, -2990113204010882473
Offset: 0
From _Peter Bala_, Aug 28 2008: (Start)
E_2(k) as linear combination of E_2(i), i = 0..1.
============================
..E_2(k)..|...E_2(0)..E_2(1)
============================
..E_2(2)..|....-1.......1...
..E_2(3)..|....-3.......0...
..E_2(4)..|....-6......-5...
..E_2(5)..|....-5.....-23...
..E_2(6)..|....33.....-74...
..E_2(7)..|...266....-161...
..E_2(8)..|..1309......57...
..E_2(9)..|..4905....3466...
...
(End)
-
List([0..30], n-> Sum([0..Int(n/2)], k-> (-1)^k*Stirling2(n,2*k)) ); # G. C. Greubel, Oct 09 2019
-
[(&+[(-1)^k*StirlingSecond(n,2*k): k in [0..Floor(n/2)]]): n in [0..30]]; // G. C. Greubel, Oct 09 2019
-
# Maple code for A024430, A024429, A121867, A121868.
M:=30; a:=array(0..100); b:=array(0..100); c:=array(0..100); d:=array(0..100); a[0]:=1; b[0]:=0; c[0]:=1; d[0]:=0;
for n from 1 to M do a[n]:=add(binomial(n-1,k)*b[k], k=0..n-1); b[n]:=add(binomial(n-1,k)*a[k], k=0..n-1); c[n]:=add(binomial(n-1,k)*d[k], k=0..n-1); d[n]:=-add(binomial(n-1,k)*c[k], k=0..n-1); od: ta:=[seq(a[n],n=0..M)]; tb:=[seq(b[n],n=0..M)]; tc:=[seq(c[n],n=0..M)]; td:=[seq(d[n],n=0..M)];
# Code based on Stirling transform:
stirtr:= proc(p) proc(n) option remember;
add(p(k) *Stirling2(n,k), k=0..n) end
end:
a:= stirtr(n-> (I^n + (-I)^n)/2):
seq(a(n), n=0..30); # Alois P. Heinz, Jan 29 2011
-
a[n_] := (BellB[n, -I] + BellB[n, I])/2; Table[a[n], {n, 0, 26}] (* Jean-François Alcover, Mar 06 2013, after Alois P. Heinz *)
-
a(n) = sum(k=0,n\2, (-1)^k*stirling(n,2*k,2));
vector(30, n, a(n-1)) \\ G. C. Greubel, Oct 09 2019
-
[sum((-1)^k*stirling_number2(n,2*k) for k in (0..floor(n/2))) for n in (0..30)] # G. C. Greubel, Oct 09 2019
A143628
Define E(n) = Sum_{k >= 0} (-1)^floor(k/3)*k^n/k! for n = 0,1,2,... . Then E(n) is an integral linear combination of E(0), E(1) and E(2). This sequence lists the coefficients of E(0).
Original entry on oeis.org
1, 0, 0, -1, -6, -25, -89, -280, -700, -380, 13452, 149831, 1214852, 8700263, 57515640, 351296151, 1909757620, 8017484274, 5703377941, -428273438434, -7295220035921, -89868583754993, -970185398785810, -9657428906237364
Offset: 0
E(n) as linear combination of E(i),
i = 0..2.
====================================
..E(n)..|.....E(0).....E(1)....E(2).
====================================
..E(3)..|......-1......-2........3..
..E(4)..|......-6......-7........7..
..E(5)..|.....-25.....-23.......14..
..E(6)..|.....-89.....-80.......16..
..E(7)..|....-280....-271......-77..
..E(8)..|....-700....-750.....-922..
..E(9)..|....-380....-647....-6660..
..E(10).|...13452...13039...-41264..
...
a(5) = -25 because E(5) = -25*E(0) - 23*E(1) + 14*E(2).
a(6) = -89 because E(6) = -89*E(0) - 80*E(1) + 16*E(2).
-
# Compare with A143815
#
M:=24: a:=array(0..100): b:=array(0..100): c:=array(0..100):
a[0]:=1: b[0]:=0: c[0]:=0:
for n from 1 to M do
a[n]:= -add(binomial(n-1,k)*c[k], k=0..n-1);
b[n]:= add(binomial(n-1,k)*a[k], k=0..n-1);
c[n]:= add(binomial(n-1,k)*b[k], k=0..n-1);
end do:
A143628:=[seq(a[n], n=0..M)];
-
m = 23; a[0] = 1; b[0] = 0; c[0] = 0; For[n = 1, n <= m, n++, a[n] = -Sum[ Binomial[n-1, k]*c[k], {k, 0, n-1}]; b[n] = Sum[ Binomial[n-1, k]*a[k], {k, 0, n-1}]; c[n] = Sum[ Binomial[n-1, k]*b[k], {k, 0, n-1}]]; Table[a[n], {n, 0, m}] (* Jean-François Alcover, Mar 06 2013, after Maple *)
-
Bell_poly(n, x) = exp(-x)*suminf(k=0, k^n*x^k/k!);
a(n) = my(w=(-1+sqrt(3)*I)/2); round(Bell_poly(n, -1)+Bell_poly(n, -w)+Bell_poly(n, -w^2))/3; \\ Seiichi Manyama, Oct 15 2022
A121868
Let A(0) = 1, B(0) = 0; A(n+1) = Sum_{k=0..n} binomial(n,k)*B(k), B(n+1) = Sum_{k=0..n} -binomial(n,k)*A(k); entry gives B sequence (cf. A121867).
Original entry on oeis.org
0, -1, -1, 0, 5, 23, 74, 161, -57, -3466, -27361, -155397, -687688, -1888525, 4974059, 134695952, 1400820897, 11055147275, 70658948426, 327448854237, 223871274083, -19116044475298, -314203665206509, -3562429698724513, -33024521386113840, -250403183401213513
Offset: 0
From _Peter Bala_, Aug 28 2008: (Start)
E_2(k) as a linear combination of E_2(i), i = 0..1.
============================
..E_2(k)..|...E_2(0)..E_2(1)
============================
..E_2(2)..|....-1.......1...
..E_2(3)..|....-3.......0...
..E_2(4)..|....-6......-5...
..E_2(5)..|....-5.....-23...
..E_2(6)..|....33.....-74...
..E_2(7)..|...266....-161...
..E_2(8)..|..1309......57...
..E_2(9)..|..4905....3466...
(End)
- Alois P. Heinz, Table of n, a(n) for n = 0..250
- A. Fekete and G. Martin, Problem 10791: Squared Series Yielding Integers, Amer. Math. Monthly, 108 (No. 2, 2001), 177-178.
- V. V. Kruchinin, Composition of ordinary generating functions, arXiv:1009.2565 [math.CO], 2010.
-
List([0..30], n-> Sum([0..Int(n/2)], k-> (-1)^(k+1)* Stirling2(n,2*k+1)) ); # G. C. Greubel, Oct 09 2019
-
[(&+[(-1)^(k+1)*StirlingSecond(n,2*k+1): k in [0..Floor(n/2)]]): n in [0..30]]; // G. C. Greubel, Oct 09 2019
-
# Maple code for A024430, A024429, A121867, A121868.
M:=30; a:=array(0..100); b:=array(0..100); c:=array(0..100); d:=array(0..100); a[0]:=1; b[0]:=0; c[0]:=1; d[0]:=0;
for n from 1 to M do a[n]:=add(binomial(n-1,k)*b[k], k=0..n-1); b[n]:=add(binomial(n-1,k)*a[k], k=0..n-1); c[n]:=add(binomial(n-1,k)*d[k], k=0..n-1); d[n]:=-add(binomial(n-1,k)*c[k], k=0..n-1); od: ta:=[seq(a[n],n=0..M)]; tb:=[seq(b[n],n=0..M)]; tc:=[seq(c[n],n=0..M)]; td:=[seq(d[n],n=0..M)];
# Code based on Stirling transform:
stirtr:= proc(p) proc(n) option remember;
add(p(k) *Stirling2(n, k), k=0..n) end
end:
a:= stirtr(n-> (I^(n+1) + (-I)^(n+1))/2):
seq(a(n), n=0..30); # Alois P. Heinz, Jan 29 2011
-
stirtr[p_] := Module[{f}, f[n_] := f[n] = Sum[p[k]*StirlingS2[n, k], {k, 0, n}]; f]; a = stirtr[(I^(#+1)+(-I)^(#+1))/2&]; Table[a[n], {n, 0, 30}] (* Jean-François Alcover, Mar 11 2014, after Alois P. Heinz *)
Table[Im[BellB[n, -I]], {n, 0, 25}] (* Vladimir Reshetnikov, Oct 22 2015 *)
-
a(n) = sum(k=0,n\2, (-1)^(k+1)*stirling(n,2*k+1,2));
vector(30, n, a(n-1)) \\ G. C. Greubel, Oct 09 2019
-
[sum((-1)^(k+1)*stirling_number2(n,2*k+1) for k in (0..floor(n/2))) for n in (0..30)] # G. C. Greubel, Oct 09 2019
A143630
Define E(n) = Sum_{k >= 0} (-1)^floor(k/3)*k^n/k! for n = 0,1,2,.... Then E(n) is an integral linear combination of E(0), E(1) and E(2). This sequence lists the coefficients of E(2).
Original entry on oeis.org
0, 0, 1, 3, 7, 14, 16, -77, -922, -6660, -41264, -233828, -1218392, -5607225, -19220589, 4397930, 1016675382, 14251497833, 151695504253, 1432992328055, 12527186450276, 102042171190168, 760272520469199, 4849866087637364
Offset: 0
E(n) as linear combination of E(i),
i = 0..2.
====================================
..E(n)..|.....E(0)....E(1).....E(2).
====================================
..E(3)..|......-1......-2........3..
..E(4)..|......-6......-7........7..
..E(5)..|.....-25.....-23.......14..
..E(6)..|.....-89.....-80.......16..
..E(7)..|....-280....-271......-77..
..E(8)..|....-700....-750.....-922..
..E(9)..|....-380....-647....-6660..
..E(10).|...13452...13039...-41264..
...
a(5) = 14 because E(5) = -25*E(0) - 23*E(1) + 14*E(2).
a(6) = 16 because E(6) = -89*E(0) - 80*E(1) + 16*E(2).
-
# Compare with A143817
#
M:=24: a:=array(0..100): b:=array(0..100): c:=array(0..100):
a[0]:=1: b[0]:=0: c[0]:=0:
for n from 1 to M do
a[n]:= -add(binomial(n-1,k)*c[k], k=0..n-1);
b[n]:= add(binomial(n-1,k)*a[k], k=0..n-1);
c[n]:= add(binomial(n-1,k)*b[k], k=0..n-1);
end do:
A143630:=[seq(c[n], n=0..M)];
-
m = 23; a[0] = 1; b[0] = 0; c[0] = 0; For[n = 1, n <= m, n++, a[n] = -Sum[Binomial[n - 1, k]*c[k], {k, 0, n - 1}]; b[n] = Sum[Binomial[n - 1, k]*a[k], {k, 0, n - 1}]; c[n] = Sum[Binomial[n - 1, k]*b[k], {k, 0, n - 1}]]; A143630 = Table[c[n], {n, 0, m}] (* Jean-François Alcover, Mar 06 2013, after Maple *)
-
Bell_poly(n, x) = exp(-x)*suminf(k=0, k^n*x^k/k!);
a(n) = my(w=(-1+sqrt(3)*I)/2); round(Bell_poly(n, -1)+w*Bell_poly(n, -w)+w^2*Bell_poly(n, -w^2))/3; \\ Seiichi Manyama, Oct 15 2022
A143817
Let A(0) = 1, B(0) = 0 and C(0) = 0. Let B(n+1) = Sum_{k = 0..n} binomial(n,k)* A(k), C(n+1) = Sum_{k = 0..n} binomial(n,k)*B(k) and A(n+1) = Sum_{k = 0..n} binomial(n,k)*C(k). This entry gives the sequence C(n).
Original entry on oeis.org
0, 0, 1, 3, 7, 16, 46, 203, 1178, 7242, 43786, 259634, 1540540, 9414639, 61061613, 428890726, 3266930298, 26581123093, 226393705465, 1986997358251, 17827284972818, 163278469610570, 1531115974317975, 14771302315885372, 147267150734530892, 1521022490460243316
Offset: 0
R(n) as a linear combination of R(0),R(1)
and R(2) - R(1).
=======================================
..R(n)..|.....R(0).....R(1)...R(2)-R(1)
=======================================
..R(3)..|.......1........1........3....
..R(4)..|.......6........2........7....
..R(5)..|......25.......11.......16....
..R(6)..|......91.......66.......46....
..R(7)..|.....322......352......203....
..R(8)..|....1232.....1730.....1178....
..R(9)..|....5672.....8233.....7242....
..R(10).|...32202....39987....43786....
Cf.
A000110,
A024429,
A024430,
A143628,
A143629,
A143630,
A143631,
A143815,
A143816,
A143818,
A143819,
A143820,
A143821.
-
# (1)
M:=24: a:=array(0..100): b:=array(0..100): c:=array(0..100):
a[0]:=1: b[0]:=0: c[0]:=0:
for n from 1 to M do
b[n]:=add(binomial(n-1,k)*a[k], k=0..n-1);
c[n]:=add(binomial(n-1,k)*b[k], k=0..n-1);
a[n]:=add(binomial(n-1,k)*c[k], k=0..n-1);
end do:
A143817:=[seq(c[n], n=0..M)];
# (2)
seq(add(Stirling2(n,3*i+2),i = 0..floor((n-2)/3)), n = 0..24);
# third Maple program:
b:= proc(n, t) option remember; `if`(n=0, irem(t, 2),
add(b(n-j, irem(t+1, 3))*binomial(n-1, j-1), j=1..n))
end:
a:= n-> b(n, 2):
seq(a(n), n=0..25); # Alois P. Heinz, Feb 20 2018
-
a[n_] := Sum[ StirlingS2[n, 3*i+2], {i, 0, (n-2)/3}]; Table[a[n], {n, 0, 23}] (* Jean-François Alcover, Mar 06 2013 *)
-
Bell_poly(n, x) = exp(-x)*suminf(k=0, k^n*x^k/k!);
a(n) = my(w=(-1+sqrt(3)*I)/2); round(Bell_poly(n, 1)+w*Bell_poly(n, w)+w^2*Bell_poly(n, w^2))/3; \\ Seiichi Manyama, Oct 13 2022
A143629
Define E(n) = Sum_{k>=0} (-1)^floor(k/3)*k^n/k! for n = 0,1,2,... . Then E(n) is an integral linear combination of E(0), E(1) and E(2). This sequence lists the coefficients of E(1).
Original entry on oeis.org
0, 1, 0, -2, -7, -23, -80, -271, -750, -647, 13039, 152011, 1232583, 8750796, 57405464, 349329354, 1899818951, 8008845556, 5981853002, -425732481925, -7285403175563, -89895756043392, -970910901819211, -9663021449412616
Offset: 0
E(n) as linear combination of E(i),
i = 0..2.
====================================
..E(n)..|.....E(0).....E(1)....E(2).
====================================
..E(3)..|......-1......-2........3..
..E(4)..|......-6......-7........7..
..E(5)..|.....-25.....-23.......14..
..E(6)..|.....-89.....-80.......16..
..E(7)..|....-280....-271......-77..
..E(8)..|....-700....-750.....-922..
..E(9)..|....-380....-647....-6660..
..E(10).|...13452...13039...-41264..
...
a(5) = -23 because E(5) = -25*E(0) - 23*E(1) + 14*E(2).
a(6) = -80 because E(6) = -89*E(0) - 80*E(1) + 16*E(2).
-
# Compare with A143818
M:=24: a:=array(0..100): b:=array(0..100): c:=array(0..100):
a[0]:=1: b[0]:=0: c[0]:=0:
for n from 1 to M do
a[n]:= -add(binomial(n-1,k)*c[k], k=0..n-1);
b[n]:= add(binomial(n-1,k)*a[k], k=0..n-1);
c[n]:= add(binomial(n-1,k)*b[k], k=0..n-1);
end do:
A143629:=[seq(b[n]-c[n], n=0..M)];
-
m = 23; a[0] = 1; b[0] = 0; c[0] = 0; For[n = 1, n <= m, n++, a[n] = -Sum[ Binomial[n - 1, k]*c[k], {k, 0, n - 1}]; b[n] = Sum[ Binomial[n - 1, k]*a[k], {k, 0, n - 1}]; c[n] = Sum[ Binomial[n - 1, k]*b[k], {k, 0, n - 1}] ]; A143629 = Table[b[n] - c[n], {n, 0, m}] (* Jean-François Alcover, Mar 06 2013, after Maple *)
A143816
Let A(0) = 1, B(0) = 0 and C(0) = 0. Let B(n+1) = Sum_{k = 0..n} binomial(n,k)* A(k), C(n+1) = Sum_{k = 0..n} binomial(n,k)*B(k) and A(n+1) = Sum_{k = 0..n} binomial(n,k)*C(k). This entry gives the sequence B(n).
Original entry on oeis.org
0, 1, 1, 1, 2, 11, 66, 352, 1730, 8233, 39987, 209793, 1240603, 8287281, 60473869, 463764484, 3647602117, 29165686541, 237499318823, 1984374301872, 17167462137733, 154885317758354, 1461156867801556, 14381004640256202, 146852743814531169, 1546054541191452967
Offset: 0
R(n) as a linear combination of R(0),R(1)
and R(2) - R(1).
=======================================
..R(n)..|.....R(0).....R(1)...R(2)-R(1)
=======================================
..R(3)..|.......1........1........3....
..R(4)..|.......6........2........7....
..R(5)..|......25.......11.......16....
..R(6)..|......91.......66.......46....
..R(7)..|.....322......352......203....
..R(8)..|....1232.....1730.....1178....
..R(9)..|....5672.....8233.....7242....
..R(10).|...32202....39987....43786....
Cf.
A000110,
A024429,
A024430,
A143628,
A143629,
A143630,
A143631,
A143815,
A143817,
A143818,
A143819,
A143820,
A143821.
-
# (1)
M:=24: a:=array(0..100): b:=array(0..100): c:=array(0..100):
a[0]:=1: b[0]:=0: c[0]:=0:
for n from 1 to M do
b[n]:=add(binomial(n-1,k)*a[k], k=0..n-1);
c[n]:=add(binomial(n-1,k)*b[k], k=0..n-1);
a[n]:=add(binomial(n-1,k)*c[k], k=0..n-1);
end do:
A143816:=[seq(b[n], n=0..M)];
# (2)
seq(add(Stirling2(n,3*i+1),i = 0..floor((n-1)/3)), n = 0..24);
# third Maple program:
b:= proc(n, t) option remember; `if`(n=0, irem(t, 2),
add(b(n-j, irem(t+1, 3))*binomial(n-1, j-1), j=1..n))
end:
a:= n-> b(n, 0):
seq(a(n), n=0..25); # Alois P. Heinz, Feb 20 2018
-
m = 23; a[0] = 1; b[0] = 0; c[0] = 0; For[n = 1, n <= m, n++, b[n] = Sum[Binomial[n - 1, k]*a[k], {k, 0, n - 1}]; c[n] = Sum[Binomial[n - 1, k]*b[k], {k, 0, n - 1}]; a[n] = Sum[Binomial[n - 1, k]*c[k], {k, 0, n - 1}]]; A143816 = Table[ b[n], {n, 0, m}] (* Jean-François Alcover, Mar 06 2013, after Maple *)
-
Bell_poly(n, x) = exp(-x)*suminf(k=0, k^n*x^k/k!);
a(n) = my(w=(-1+sqrt(3)*I)/2); round(Bell_poly(n, 1)+w^2*Bell_poly(n, w)+w*Bell_poly(n, w^2))/3; \\ Seiichi Manyama, Oct 13 2022
A143818
Let R(n) = sum {k = 0..inf} (3k)^n/(3k)! for n = 0,1,2,... . Then the real number R(n) is an integral linear combination of R(0), R(1) and R(2). This sequence gives the coefficients of R(1).
Original entry on oeis.org
0, 1, 0, -2, -5, -5, 20, 149, 552, 991, -3799, -49841, -299937, -1127358, -587744, 34873758, 380671819, 2584563448, 11105613358, -2623056379, -659822835085, -8393151852216, -69959106516419, -390297675629170, -414406919999723
Offset: 1
R(n) as a linear combination of R(i),
i = 0..2.
====================================
..R(n)..|.....R(0)....R(1)....R(2)..
====================================
..R(3)..|.......1......-2.......3...
..R(4)..|.......6......-5.......7...
..R(5)..|......25......-5......16...
..R(6)..|......91......20......46...
..R(7)..|.....322.....149.....203...
..R(8)..|....1232.....552....1178...
..R(9)..|....5672.....991....7242...
..R(10).|...32202...-3799...43786...
...
-
M:=24: a:=array(0..100): b:=array(0..100): c:=array(0..100):
a[0]:=1: b[0]:=0: c[0]:=0:
for n from 1 to M do
a[n]:=add(binomial(n-1,k)*b[k], k=0..n-1);
b[n]:=add(binomial(n-1,k)*c[k], k=0..n-1);
c[n]:=add(binomial(n-1,k)*a[k], k=0..n-1);
end do:
A143818:=[seq(b[n]-c[n], n=0..M)];
-
m = 24; a[0] = 1; b[0] = 0; c[0] = 0; For[n = 1, n <= m, n++, a[n] = Sum[Binomial[n - 1, k]*b[k], {k, 0, n - 1}]; b[n] = Sum[Binomial[n - 1, k]*c[k], {k, 0, n - 1}]; c[n] = Sum[Binomial[n - 1, k]*a[k], {k, 0, n - 1}] ]; A143818 = Table[c[n] - b[n], {n, 0, m}] (* Jean-François Alcover, Mar 06 2013, after Maple *)
Showing 1-9 of 9 results.
Comments