cp's OEIS Frontend

This is a front-end for the Online Encyclopedia of Integer Sequences, made by Christian Perfect. The idea is to provide OEIS entries in non-ancient HTML, and then to think about how they're presented visually. The source code is on GitHub.

Showing 1-10 of 12 results. Next

A143815 Let A(0)=1, B(0)=0 and C(0)=0. Let B(n+1) = Sum_{k = 0..n} binomial(n,k)*A(k), C(n+1) = Sum_{k = 0..n} binomial(n,k)*B(k) and A(n+1) = Sum_{k = 0..n} binomial(n,k)*C(k). This entry gives the sequence A(n).

Original entry on oeis.org

1, 0, 0, 1, 6, 25, 91, 322, 1232, 5672, 32202, 209143, 1432454, 9942517, 69363840, 490303335, 3565609732, 27118060170, 218183781871, 1861370544934, 16729411124821, 156706028787827, 1514442896327792, 14999698898942772, 151838974745743228, 1571513300578303070
Offset: 0

Views

Author

Peter Bala, Sep 03 2008

Keywords

Comments

Compare with A024429 and A024430.
This sequence and its companion sequences B(n) = A143816(n) and C(n) = A143817(n) may be viewed as generalizations of the Bell numbers A000110. Define a sequence R(n) of real numbers by R(n) = Sum_{k >= 0} (3*k)^n/(3*k)! for n = 0, 1, 2, .... It is easy to verify that this sequence satisfies the recurrence relation u(n+3) = 3*u(n+2) - 2*u(n+1) + Sum_{i = 0..n} binomial(n, i)*3^(n-i)*u(i). Hence R(n) is an integral linear combination of R(0), R(1) and R(2). Some examples are given below.
To find the precise form of the linear relation define two other sequences of real numbers by S(n) = Sum_{k >= 0} (3*k+1)^n/(3*k+1)! and T(n) = Sum_{k >= 0} (3*k+2)^n/(3*k+2)! for n = 0, 1, 2, .... Both S(n) and T(n) satisfy the above recurrence. Then by means of the identities S(n+1) = Sum_{i = 0..n} binomial(n, i)*R(i), T(n+1) = Sum_{i = 0..n} binomial(n, i)*S(i) and R(n+1) = Sum_{i = 0..n} binomial(n, i)*T(i) we obtain the result R(n) = A(n)*R(0) + (B(n) - C(n))*R(1) + C(n)*R(2) = A(n)*R(0) + B(n)*R(1) + C(n)*(R(2) - R(1)) (with corresponding expressions for S(n) and T(n)). This generalizes the Dobinski's relation for the Bell numbers Sum_{k >= 0} k^n/k! = A000110(n)*exp(1).
Some examples of R(n) as a linear combination of R(0), R(1) and R(2) - R(1) are given below. The decimal expansions of R(0) = 1 + 1/3! + 1/6! + 1/9! + ..., R(2) - R(1) = 1/1! + 1/4! + 1/7! + ... and R(1) = 1/2! + 1/5! + 1/8! + ... may be found in A143819, A143820 and A143821 respectively. Compare with A143628 through A143631.
For n > 0, the number of partitions of {1,2,...,n} into 3,6,9,... classes. - Geoffrey Critzer, Mar 05 2010

Examples

			R(n) as a linear combination of R(i), i = 0..2.
  ==================================
  R(n)  |     R(0)    R(1)    R(2)
  ==================================
  R(3)  |       1      -2       3
  R(4)  |       6      -5       7
  R(5)  |      25      -5      16
  R(6)  |      91      20      46
  R(7)  |     322     149     203
  R(8)  |    1232     552    1178
  R(9)  |    5672     991    7242
  R(10) |   32202   -3799   43786
  ...
Column 2 of the above table is A143818.
R(n) as a linear combination of R(0),R(1) and R(2) - R(1).
  =====================================
  R(n)  |     R(0)     R(1)   R(2)-R(1)
  =====================================
  R(3)  |       1        1        3
  R(4)  |       6        2        7
  R(5)  |      25       11       16
  R(6)  |      91       66       46
  R(7)  |     322      352      203
  R(8)  |    1232     1730     1178
  R(9)  |    5672     8233     7242
  R(10) |   32202    39987    43786
  ...
		

Crossrefs

Programs

  • Maple
    # (1)
    M:=24: a:=array(0..100): b:=array(0..100): c:=array(0..100):
    a[0]:=1: b[0]:=0: c[0]:=0:
    for n from 1 to M do
    b[n]:=add(binomial(n-1,k)*a[k], k=0..n-1);
    c[n]:=add(binomial(n-1,k)*b[k], k=0..n-1);
    a[n]:=add(binomial(n-1,k)*c[k], k=0..n-1);
    end do:
    A143815:=[seq(a[n], n=0..M)];
    # (2)
    seq(add(Stirling2(n,3*i),i = 0..floor(n/3)), n = 0..24);
    # third Maple program:
    b:= proc(n, t) option remember; `if`(n=0, irem(t, 2),
          add(b(n-j, irem(t+1, 3))*binomial(n-1, j-1), j=1..n))
        end:
    a:= n-> b(n, 1):
    seq(a(n), n=0..25);  # Alois P. Heinz, Feb 20 2018
  • Mathematica
    a = Exp[x] - 1; f[x_] := 1/3 (E^x + 2 E^(-x/2) Cos[(Sqrt[3] x)/2]); CoefficientList[Series[f[a], {x, 0, 25}], x]*Table[n!, {n, 0, 25}] (* Geoffrey Critzer, Mar 05 2010 *)
  • PARI
    Bell_poly(n, x) = exp(-x)*suminf(k=0, k^n*x^k/k!);
    a(n) = my(w=(-1+sqrt(3)*I)/2); round(Bell_poly(n, 1)+Bell_poly(n, w)+Bell_poly(n, w^2))/3; \\ Seiichi Manyama, Oct 13 2022

Formula

a(n) = Sum_{k = 0..floor(n/3)} Stirling2(n, 3*k).
Let w = exp(2*Pi*i/3) and set F(x) = (exp(x) + exp(w*x) + exp(w^2*x))/3 = 1 + x^3/3! + x^6/6! + ... . Then the e.g.f. for the sequence is F(exp(x) - 1).
A143815(n) + A143816(n) + A143817(n) = Bell(n).
E.g.f. is B(A(x)) where A(x) = exp(x) - 1 and B(x) = (1/3)*(exp(x) + 2*exp(-x/2)*cos(sqrt(3)*x/2)). - Geoffrey Critzer, Mar 05 2010
a(n) = ( Bell_n(1) + Bell_n(w) + Bell_n(w^2) )/3, where Bell_n(x) is n-th Bell polynomial and w = exp(2*Pi*i/3). - Seiichi Manyama, Oct 13 2022
a(n) ~ n^n / (3 * (LambertW(n))^n * exp(n+1-n/LambertW(n)) * sqrt(1+LambertW(n))). - Vaclav Kotesovec, Jun 10 2025

A143628 Define E(n) = Sum_{k >= 0} (-1)^floor(k/3)*k^n/k! for n = 0,1,2,... . Then E(n) is an integral linear combination of E(0), E(1) and E(2). This sequence lists the coefficients of E(0).

Original entry on oeis.org

1, 0, 0, -1, -6, -25, -89, -280, -700, -380, 13452, 149831, 1214852, 8700263, 57515640, 351296151, 1909757620, 8017484274, 5703377941, -428273438434, -7295220035921, -89868583754993, -970185398785810, -9657428906237364
Offset: 0

Views

Author

Peter Bala, Sep 05 2008

Keywords

Comments

This sequence and its companion sequences A143629 and A143630 may be viewed as generalizations of the Uppuluri-Carpenter numbers (complementary Bell numbers) A000587. Define E(n) = Sum_{k >= 0} (-1)^floor(k/3)*k^n/k! = 0^n/0! + 1^n/1! + 2^n/2! - 3^n/3! - 4^n/4! - 5^n/5! + + + - - - ... for n = 0,1,2,... . It is easy to see that E(n+3) = 3*E(n+2) - 2*E(n+1) - Sum_{i = 0..n} 3^i* binomial(n,i)*E(n-i) for n >= 0. Thus E(n) is an integral linear combination of E(0), E(1) and E(2). Some examples are given below.
This sequence lists the coefficients of E(0). See A143629 and A143630 for the sequence of coefficients of E(1) and E(2) respectively. The functions F(n) := Sum_{k >= 0} (-1)^floor((k+1)/3)*k^n/k! and G(n) = Sum_{k >= 0} (-1)^floor((k+2)/3)*k^n/k! both satisfy the above recurrence as well as the identities E(n+1) = Sum_{i = 0..n} binomial(n,i)*F(i), F(n+1) = Sum_{i = 0..n} binomial(n,i)*G(i) and G(n+1) = - Sum_{i = 0..n} binomial(n,i)*E(i). This leads to the precise result for E(n) as a linear combination of E(0), E(1) and E(2), namely, E(n) = A143628(n)*E(0) + A143629(n)*E(1) + A143630(n)*E(2). Compare with A121867 and A143815.

Examples

			E(n) as linear combination of E(i),
i = 0..2.
====================================
..E(n)..|.....E(0).....E(1)....E(2).
====================================
..E(3)..|......-1......-2........3..
..E(4)..|......-6......-7........7..
..E(5)..|.....-25.....-23.......14..
..E(6)..|.....-89.....-80.......16..
..E(7)..|....-280....-271......-77..
..E(8)..|....-700....-750.....-922..
..E(9)..|....-380....-647....-6660..
..E(10).|...13452...13039...-41264..
...
a(5) = -25 because E(5) = -25*E(0) - 23*E(1) + 14*E(2).
a(6) = -89 because E(6) = -89*E(0) - 80*E(1) + 16*E(2).
		

Crossrefs

Programs

  • Maple
    # Compare with A143815
    #
    M:=24: a:=array(0..100): b:=array(0..100): c:=array(0..100):
    a[0]:=1: b[0]:=0: c[0]:=0:
    for n from 1 to M do
    a[n]:= -add(binomial(n-1,k)*c[k], k=0..n-1);
    b[n]:= add(binomial(n-1,k)*a[k], k=0..n-1);
    c[n]:= add(binomial(n-1,k)*b[k], k=0..n-1);
    end do:
    A143628:=[seq(a[n], n=0..M)];
  • Mathematica
    m = 23; a[0] = 1; b[0] = 0; c[0] = 0; For[n = 1, n <= m, n++, a[n] = -Sum[ Binomial[n-1, k]*c[k], {k, 0, n-1}]; b[n] = Sum[ Binomial[n-1, k]*a[k], {k, 0, n-1}]; c[n] = Sum[ Binomial[n-1, k]*b[k], {k, 0, n-1}]]; Table[a[n], {n, 0, m}] (* Jean-François Alcover, Mar 06 2013, after Maple *)
  • PARI
    Bell_poly(n, x) = exp(-x)*suminf(k=0, k^n*x^k/k!);
    a(n) = my(w=(-1+sqrt(3)*I)/2); round(Bell_poly(n, -1)+Bell_poly(n, -w)+Bell_poly(n, -w^2))/3; \\ Seiichi Manyama, Oct 15 2022

Formula

Define three sequences A(n), B(n) and C(n) by the relations: A(n+1) = - Sum_{i = 0..n} binomial(n,i)*C(i), B(n+1) = Sum_{i = 0..n} binomial(n,i)*A(i), C(n+1) = Sum_{i = 0..n} binomial(n,i)*B(i), with initial conditions A(0) = 1, B(0) = C(0) = 0. Then a(n) = A(n). The other sequences are B(n) = A143630 and C(n) = A143629. Compare with A143815. Also a(n) = A143629(n) + A000587(n).
From Seiichi Manyama, Oct 15 2022: (Start)
a(n) = Sum_{k = 0..floor(n/3)} (-1)^k * Stirling2(n,3*k).
a(n) = ( Bell_n(-1) + Bell_n(-w) + Bell_n(-w^2) )/3, where Bell_n(x) is n-th Bell polynomial and w = exp(2*Pi*i/3). (End)

A143630 Define E(n) = Sum_{k >= 0} (-1)^floor(k/3)*k^n/k! for n = 0,1,2,.... Then E(n) is an integral linear combination of E(0), E(1) and E(2). This sequence lists the coefficients of E(2).

Original entry on oeis.org

0, 0, 1, 3, 7, 14, 16, -77, -922, -6660, -41264, -233828, -1218392, -5607225, -19220589, 4397930, 1016675382, 14251497833, 151695504253, 1432992328055, 12527186450276, 102042171190168, 760272520469199, 4849866087637364
Offset: 0

Views

Author

Peter Bala, Sep 05 2008

Keywords

Comments

This sequence and its companion sequences A143628 and A143629 may be viewed as generalizations of the Uppuluri-Carpenter numbers (complementary Bell numbers) A000587. Define E(n) = Sum_{k >= 0} (-1)^floor(k/3)*k^n/k! = 0^n/0! + 1^n/1! + 2^n/2! - 3^n/3! - 4^n/4! - 5^n/5! + + + - - - ... for n = 0,1,2,.... It is easy to see that E(n+3) = 3*E(n+2) - 2*E(n+1) - Sum_{i = 0..n} 3^i*binomial(n,i)*E(n-i) for n >= 0. Thus E(n) is an integral linear combination of E(0), E(1) and E(2). Some examples are given below. This sequence lists the coefficients of E(2). The precise result is E(n) = A143628(n)*E(0) + A143629(n)*E(1) + A143630(n)*E(2). Compare with A121867 and A143815.

Examples

			E(n) as linear combination of E(i),
i = 0..2.
====================================
..E(n)..|.....E(0)....E(1).....E(2).
====================================
..E(3)..|......-1......-2........3..
..E(4)..|......-6......-7........7..
..E(5)..|.....-25.....-23.......14..
..E(6)..|.....-89.....-80.......16..
..E(7)..|....-280....-271......-77..
..E(8)..|....-700....-750.....-922..
..E(9)..|....-380....-647....-6660..
..E(10).|...13452...13039...-41264..
...
a(5) = 14 because E(5) = -25*E(0) - 23*E(1) + 14*E(2).
a(6) = 16 because E(6) = -89*E(0) - 80*E(1) + 16*E(2).
		

Crossrefs

Programs

  • Maple
    # Compare with A143817
    #
    M:=24: a:=array(0..100): b:=array(0..100): c:=array(0..100):
    a[0]:=1: b[0]:=0: c[0]:=0:
    for n from 1 to M do
    a[n]:= -add(binomial(n-1,k)*c[k], k=0..n-1);
    b[n]:= add(binomial(n-1,k)*a[k], k=0..n-1);
    c[n]:= add(binomial(n-1,k)*b[k], k=0..n-1);
    end do:
    A143630:=[seq(c[n], n=0..M)];
  • Mathematica
    m = 23; a[0] = 1; b[0] = 0; c[0] = 0; For[n = 1, n <= m, n++, a[n] = -Sum[Binomial[n - 1, k]*c[k], {k, 0, n - 1}]; b[n] = Sum[Binomial[n - 1, k]*a[k], {k, 0, n - 1}]; c[n] = Sum[Binomial[n - 1, k]*b[k], {k, 0, n - 1}]]; A143630 = Table[c[n], {n, 0, m}] (* Jean-François Alcover, Mar 06 2013, after Maple *)
  • PARI
    Bell_poly(n, x) = exp(-x)*suminf(k=0, k^n*x^k/k!);
    a(n) = my(w=(-1+sqrt(3)*I)/2); round(Bell_poly(n, -1)+w*Bell_poly(n, -w)+w^2*Bell_poly(n, -w^2))/3; \\ Seiichi Manyama, Oct 15 2022

Formula

Define three sequences A(n), B(n) and C(n) by the relations: A(n+1) = - Sum_{i = 0..n} binomial(n,i)*C(i), B(n+1) = Sum_{i = 0..n} binomial(n,i)*A(i), C(n+1) = Sum_{i = 0..n} binomial(n,i)*B(i), with initial conditions A(0) = 1, B(0) = C(0) = 0. Then a(n) = C(n). The other sequences are A(n) = A143628 and B(n) = A143631. Compare with A143817.
From Seiichi Manyama, Oct 15 2022: (Start)
a(n) = Sum_{k = 0..floor((n-2)/3)} (-1)^k * Stirling2(n,3*k+2).
a(n) = ( Bell_n(-1) + w * Bell_n(-w) + w^2 * Bell_n(-w^2) )/3, where Bell_n(x) is n-th Bell polynomial and w = exp(2*Pi*i/3). (End)

A143629 Define E(n) = Sum_{k>=0} (-1)^floor(k/3)*k^n/k! for n = 0,1,2,... . Then E(n) is an integral linear combination of E(0), E(1) and E(2). This sequence lists the coefficients of E(1).

Original entry on oeis.org

0, 1, 0, -2, -7, -23, -80, -271, -750, -647, 13039, 152011, 1232583, 8750796, 57405464, 349329354, 1899818951, 8008845556, 5981853002, -425732481925, -7285403175563, -89895756043392, -970910901819211, -9663021449412616
Offset: 0

Views

Author

Peter Bala, Sep 05 2008

Keywords

Comments

This sequence and its companion sequences A143628 and A143630 may be viewed as generalizations of the Uppuluri-Carpenter numbers (complementary Bell numbers) A000587. Define E(n) = Sum_{k>=0} (-1)^floor(k/3)*k^n/k! = 0^n/0! + 1^n/1! + 2^n/2! - 3^n/3! - 4^n/4! - 5^n/5! + + + - - - ... for n = 0,1,2,... . It is easy to see that E(n+3) = 3*E(n+2) - 2*E(n+1) - Sum_{i = 0..n} 3^i*binomial(n,i)*E(n-i) for n >= 0. Thus E(n) is an integral linear combination of E(0), E(1) and E(2). This sequence lists the coefficients of E(1). Some examples are given below. The precise result for E(n) as a linear combination of E(0), E(1) and E(2) is E(n) = A143628(n)*E(0) + A143629(n)*E(1) + A143630(n)*E(2). Compare with A121867 and A143815.

Examples

			E(n) as linear combination of E(i),
i = 0..2.
====================================
..E(n)..|.....E(0).....E(1)....E(2).
====================================
..E(3)..|......-1......-2........3..
..E(4)..|......-6......-7........7..
..E(5)..|.....-25.....-23.......14..
..E(6)..|.....-89.....-80.......16..
..E(7)..|....-280....-271......-77..
..E(8)..|....-700....-750.....-922..
..E(9)..|....-380....-647....-6660..
..E(10).|...13452...13039...-41264..
...
a(5) = -23 because E(5) = -25*E(0) - 23*E(1) + 14*E(2).
a(6) = -80 because E(6) = -89*E(0) - 80*E(1) + 16*E(2).
		

Crossrefs

Programs

  • Maple
    # Compare with A143818
    M:=24: a:=array(0..100): b:=array(0..100): c:=array(0..100):
    a[0]:=1: b[0]:=0: c[0]:=0:
    for n from 1 to M do
    a[n]:= -add(binomial(n-1,k)*c[k], k=0..n-1);
    b[n]:= add(binomial(n-1,k)*a[k], k=0..n-1);
    c[n]:= add(binomial(n-1,k)*b[k], k=0..n-1);
    end do:
    A143629:=[seq(b[n]-c[n], n=0..M)];
  • Mathematica
    m = 23; a[0] = 1; b[0] = 0; c[0] = 0; For[n = 1, n <= m, n++, a[n] = -Sum[ Binomial[n - 1, k]*c[k], {k, 0, n - 1}]; b[n] = Sum[ Binomial[n - 1, k]*a[k], {k, 0, n - 1}]; c[n] = Sum[ Binomial[n - 1, k]*b[k], {k, 0, n - 1}] ]; A143629 = Table[b[n] - c[n], {n, 0, m}] (* Jean-François Alcover, Mar 06 2013, after Maple *)

Formula

Define three sequences A(n), B(n) and C(n) by the relations: A(n+1) = - Sum_{i = 0..n} binomial(n,i)*C(i), B(n+1) = Sum_{i = 0..n} binomial(n,i)*A(i), C(n+1) = Sum_{i = 0..n} binomial(n,i)*B(i), with initial conditions A(0) = 1, B(0) = C(0) = 0. Then a(n) = B(n) - C(n). The other sequences are A(n) = A143628(n) and C(n) = A143630(n). The values of B(n) are recorded in A143631. Compare with A143818. Also a(n) = A143628(n) - A000587(n).

A143816 Let A(0) = 1, B(0) = 0 and C(0) = 0. Let B(n+1) = Sum_{k = 0..n} binomial(n,k)* A(k), C(n+1) = Sum_{k = 0..n} binomial(n,k)*B(k) and A(n+1) = Sum_{k = 0..n} binomial(n,k)*C(k). This entry gives the sequence B(n).

Original entry on oeis.org

0, 1, 1, 1, 2, 11, 66, 352, 1730, 8233, 39987, 209793, 1240603, 8287281, 60473869, 463764484, 3647602117, 29165686541, 237499318823, 1984374301872, 17167462137733, 154885317758354, 1461156867801556, 14381004640256202, 146852743814531169, 1546054541191452967
Offset: 0

Views

Author

Peter Bala, Sep 03 2008

Keywords

Comments

Compare with A024429 and A024430.
This sequence and its companion sequences A(n) = A143815 and C(n) = A143817 may be viewed as generalizations of the Bell numbers A000110. Define R(n) = Sum_{k >= 0} (3k)^n/(3k)! for n = 0,1,2,.... Then the real number R(n) is an integral linear combination of R(0) = 1 + 1/3! + 1/6! + ...., R(2) - R(1) = 1/1! + 1/4! + 1/7! + ... and R(1) = 1/2! + 1/5! + 1/8! + .... Some examples are given below. The precise result is R(n) = A(n)*R(0) + B(n)*R(1) + C(n)*(R(2)-R(1)). This generalizes the Dobinski relation for the Bell numbers: Sum_{k >= 0} k^n/k! = A000110(n)*exp(1). See A143815 for more details. Compare with A143628 through A143631. The decimal expansions of R(0), R(2) - R(1) and R(1) may be found in A143819, A143820 and A143821 respectively.

Examples

			R(n) as a linear combination of R(0),R(1)
and R(2) - R(1).
=======================================
..R(n)..|.....R(0).....R(1)...R(2)-R(1)
=======================================
..R(3)..|.......1........1........3....
..R(4)..|.......6........2........7....
..R(5)..|......25.......11.......16....
..R(6)..|......91.......66.......46....
..R(7)..|.....322......352......203....
..R(8)..|....1232.....1730.....1178....
..R(9)..|....5672.....8233.....7242....
..R(10).|...32202....39987....43786....
		

Crossrefs

Programs

  • Maple
    # (1)
    M:=24: a:=array(0..100): b:=array(0..100): c:=array(0..100):
    a[0]:=1: b[0]:=0: c[0]:=0:
    for n from 1 to M do
    b[n]:=add(binomial(n-1,k)*a[k], k=0..n-1);
    c[n]:=add(binomial(n-1,k)*b[k], k=0..n-1);
    a[n]:=add(binomial(n-1,k)*c[k], k=0..n-1);
    end do:
    A143816:=[seq(b[n], n=0..M)];
    # (2)
    seq(add(Stirling2(n,3*i+1),i = 0..floor((n-1)/3)), n = 0..24);
    # third Maple program:
    b:= proc(n, t) option remember; `if`(n=0, irem(t, 2),
          add(b(n-j, irem(t+1, 3))*binomial(n-1, j-1), j=1..n))
        end:
    a:= n-> b(n, 0):
    seq(a(n), n=0..25);  # Alois P. Heinz, Feb 20 2018
  • Mathematica
    m = 23; a[0] = 1; b[0] = 0; c[0] = 0; For[n = 1, n <= m, n++, b[n] = Sum[Binomial[n - 1, k]*a[k], {k, 0, n - 1}]; c[n] = Sum[Binomial[n - 1, k]*b[k], {k, 0, n - 1}]; a[n] = Sum[Binomial[n - 1, k]*c[k], {k, 0, n - 1}]]; A143816 = Table[ b[n], {n, 0, m}] (* Jean-François Alcover, Mar 06 2013, after Maple *)
  • PARI
    Bell_poly(n, x) = exp(-x)*suminf(k=0, k^n*x^k/k!);
    a(n) = my(w=(-1+sqrt(3)*I)/2); round(Bell_poly(n, 1)+w^2*Bell_poly(n, w)+w*Bell_poly(n, w^2))/3; \\ Seiichi Manyama, Oct 13 2022

Formula

a(n) = Sum_{k = 0..floor((n-1)/3)} Stirling2(n,3k+1).
Let w = exp(2*Pi*i/3) and set F(x) = (exp(x) + w^2*exp(w*x) + w*exp(w^2*x))/3 = x + x^4/4! + x^7/7! + ... . Then the e.g.f. for the sequence is F(exp(x)-1). A143815(n) + A143816(n) + A143817(n) = Bell(n).
a(n) = ( Bell_n(1) + w^2 * Bell_n(w) + w * Bell_n(w^2) )/3, where Bell_n(x) is n-th Bell polynomial and w = exp(2*Pi*i/3). - Seiichi Manyama, Oct 13 2022

Extensions

Spelling/notation corrections by Charles R Greathouse IV, Mar 18 2010

A143819 Decimal expansion of Sum_{k>=0} 1/(3*k)!.

Original entry on oeis.org

1, 1, 6, 8, 0, 5, 8, 3, 1, 3, 3, 7, 5, 9, 1, 8, 5, 2, 5, 5, 1, 6, 2, 5, 6, 9, 2, 9, 6, 1, 1, 1, 4, 4, 7, 4, 7, 7, 1, 6, 9, 3, 3, 2, 9, 5, 1, 1, 3, 2, 9, 2, 5, 1, 6, 3, 8, 5, 8, 9, 1, 2, 3, 2, 6, 8, 5, 1, 1, 3, 4, 4, 6, 4, 7, 3, 2, 0, 5, 5, 7, 1, 7, 9, 0, 8, 7, 2, 4, 8, 0, 5, 8, 5, 5, 1, 9, 1, 8, 9, 6
Offset: 1

Views

Author

Peter Bala, Sep 03 2008

Keywords

Comments

Previous name was: Decimal expansion of the constant 1 + 1/3! + 1/6! + 1/9! + ... = 1.16805 83133 75918 ... .
Define a sequence R(n) of real numbers by R(n) := Sum_{k>=0} (3*k)^n/(3*k)! for n = 0,1,2,... . This constant is R(0); the decimal expansions of R(2) - R(1) = 1/1! + 1/4! + 1/7! and R(1) = 1/2! + 1/5! + 1/8! + ... may be found in A143820 and A143821. It is easy to verify that the sequence R(n) satisfies the recurrence relation u(n+3) = 3*u(n+2) - 2*u(n+1) + Sum_{i=0..n} binomial(n,i) * 3^(n-i)*u(i). Hence R(n) is an integral linear combination of R(0), R(1) and R(2) and so also an integral linear combination of R(0), R(1) and R(2) - R(1). Some examples are given below.
Bowman and Mc Laughlin (Corollary 10 with m = -1) give a continued fraction expansion for this constant and deduce the constant is irrational. - Peter Bala, Apr 17 2017

Examples

			1.168058313375918525516256929611144747716933295113292516385891232685...
R(n) as a linear combination of R(0), R(1) and R(2) - R(1).
=======================================
  R(n)  |     R(0)     R(1)   R(2)-R(1)
=======================================
  R(3)  |       1        1        3
  R(4)  |       6        2        7
  R(5)  |      25       11       16
  R(6)  |      91       66       46
  R(7)  |     322      352      203
  R(8)  |    1232     1730     1178
  R(9)  |    5672     8233     7242
  R(10) |   32202    39987    43786
  ...
The column entries are from A143815, A143816 and A143817.
		

Crossrefs

Cf. A001113 (Sum 1/k!), A073743 (Sum 1/(2k)!), this sequence (Sum 1/(3k)!), A332890 (Sum 1/(4k)!), A269296 (Sum 1/(5k)!), A332892 (Sum 1/(6k)!), A346441.

Programs

  • Mathematica
    RealDigits[ N[ 1/3*(2*Cos[Sqrt[3]/2]/Sqrt[E] + E), 105]][[1]] (* Jean-François Alcover, Nov 08 2012 *)
    With[{nn=120},RealDigits[N[Total[Table[1/(3n)!,{n,nn}]]+1,nn],10,nn][[1]]] (* Harvey P. Dale, Apr 20 2013 *)
  • PARI
    suminf(k=0, 1/(3*k)!) \\ Michel Marcus, Feb 21 2016

Formula

Equals (exp(1) + exp(w) + exp(w^2))/3, where w = exp(2*Pi*i/3).
A143819 + A143820 + A143821 = exp(1).
Equals 1/3 * (e + 2 * cos(sqrt(3)/2) / sqrt(e)). - Bernard Schott, Mar 01 2020
Sum_{k>=0} (-1)^k / (3*k)! = (exp(-1) + 2*exp(1/2)*cos(sqrt(3)/2))/ 3 = 0.83471946857721... - Vaclav Kotesovec, Mar 02 2020
Continued fraction: 1 + 1/(6 - 6/(121 - 120/(505 - ... - P(n-1)/((P(n) + 1) - ... )))), where P(n) = (3*n )*(3*n - 1)*(3*n - 2) for n >= 1. Cf. A346441. - Peter Bala, Feb 22 2024

Extensions

Offset corrected by R. J. Mathar, Feb 05 2009
New name from Bernard Schott, Mar 02 2020

A143818 Let R(n) = sum {k = 0..inf} (3k)^n/(3k)! for n = 0,1,2,... . Then the real number R(n) is an integral linear combination of R(0), R(1) and R(2). This sequence gives the coefficients of R(1).

Original entry on oeis.org

0, 1, 0, -2, -5, -5, 20, 149, 552, 991, -3799, -49841, -299937, -1127358, -587744, 34873758, 380671819, 2584563448, 11105613358, -2623056379, -659822835085, -8393151852216, -69959106516419, -390297675629170, -414406919999723
Offset: 1

Views

Author

Peter Bala, Sep 03 2008

Keywords

Comments

The coefficients of R(0) and R(2) are listed in A143815 and A143817 respectively.

Examples

			R(n) as a linear combination of R(i),
i = 0..2.
====================================
..R(n)..|.....R(0)....R(1)....R(2)..
====================================
..R(3)..|.......1......-2.......3...
..R(4)..|.......6......-5.......7...
..R(5)..|......25......-5......16...
..R(6)..|......91......20......46...
..R(7)..|.....322.....149.....203...
..R(8)..|....1232.....552....1178...
..R(9)..|....5672.....991....7242...
..R(10).|...32202...-3799...43786...
...
		

Crossrefs

Programs

  • Maple
    M:=24: a:=array(0..100): b:=array(0..100): c:=array(0..100):
    a[0]:=1: b[0]:=0: c[0]:=0:
    for n from 1 to M do
    a[n]:=add(binomial(n-1,k)*b[k], k=0..n-1);
    b[n]:=add(binomial(n-1,k)*c[k], k=0..n-1);
    c[n]:=add(binomial(n-1,k)*a[k], k=0..n-1);
    end do:
    A143818:=[seq(b[n]-c[n], n=0..M)];
  • Mathematica
    m = 24; a[0] = 1; b[0] = 0; c[0] = 0; For[n = 1, n <= m, n++, a[n] = Sum[Binomial[n - 1, k]*b[k], {k, 0, n - 1}]; b[n] = Sum[Binomial[n - 1, k]*c[k], {k, 0, n - 1}]; c[n] = Sum[Binomial[n - 1, k]*a[k], {k, 0, n - 1}] ]; A143818 = Table[c[n] - b[n], {n, 0, m}] (* Jean-François Alcover, Mar 06 2013, after Maple *)

Formula

a(n) = A143816(n) - A143817(n). a(n) = sum {k = 0..floor((n-1)/3)} (Stirling2(n,3k+1) - Stirling2(n,3k+2)). Let R(n) = sum {k = 0..inf} (3k)^n/(3k)! for n = 0,1,2,... . Then R(n) = A143815(n)*R(0) + A143818(n)*R(1) + A143817(n)*R(2). Some examples are given below. This generalizes the Dobinski relation for the Bell numbers: sum {k = 0..inf} k^n/k! = A000110(n)*exp(1). See A143815 for more details. Compare with A024429, A024430 and A143628--A143631

Extensions

Spelling/notation corrections by Charles R Greathouse IV, Mar 18 2010

A143820 Decimal expansion of the constant 1/1! + 1/4! + 1/7! + ...

Original entry on oeis.org

1, 0, 4, 1, 8, 6, 5, 3, 5, 5, 0, 9, 8, 9, 0, 9, 8, 4, 6, 3, 0, 1, 3, 3, 6, 6, 1, 5, 0, 2, 1, 5, 2, 7, 3, 8, 7, 6, 9, 7, 0, 8, 3, 5, 7, 1, 7, 2, 4, 1, 6, 3, 4, 5, 9, 5, 4, 5, 7, 3, 9, 2, 5, 5, 4, 2, 3, 5, 5, 1, 7, 4, 1, 1, 6, 1, 0, 7, 4, 0, 2, 9, 5, 9, 2, 8, 6, 2, 6, 7, 3, 9, 3, 0, 1, 0, 0, 6, 5, 5, 2
Offset: 1

Views

Author

Peter Bala, Sep 03 2008

Keywords

Comments

Define a sequence R(n) of real numbers by R(n) := Sum_{k >= 0} (3*k)^n/(3*k)! for n = 0,1,2,... . This constant is R(2) - R(1); the decimal expansions of R(0) = 1 + 1/3! + 1/6! + ... and R(1) = 1/2! + 1/5! + 1/8! + ... may be found in A143819 and A143821. It is easy to verify that the sequence R(n) satisfies the recurrence relation u(n+3) = 3*u(n+2) - 2*u(n+1) + Sum_{i = 0..n} binomial(n,i) * 3^(n-i)*u(i). Hence R(n) is an integral linear combination of R(0), R(1) and R(2) and so also an integral linear combination of R(0), R(1) and R(2) - R(1).
R(n) as a linear combination of R(0), R(1) and R(2) - R(1).
========================================
| linear combination of
R(n) | R(0) R(1) R(2) - R(1)
========================================
R(3) | 1 1 3
R(4) | 6 2 7
R(5) | 25 11 16
R(6) | 91 66 46
R(7) | 322 352 203
R(8) | 1232 1730 1178
R(9) | 5672 8233 7242
R(10) | 32202 39987 43786
...
The column entries are from A143815, A143816 and A143817.
The Abraham Ungar 1982 article defines H_{n,r}(z) = Sum_{k>=0} z^(nk+r)/(nk+r)! as equation (1). The constant is H_{3,1}(1). In equation (13) H_{3,1}(x) = (exp(x) + 2 * exp(-x/2) * cos(sqrt(3)/2*x - 2*Pi/3))/3. In equation (12) the expression H_{3,1}(x) = (e^x + q_2 e^{q_1 x} + q_1 e^{q_2 x})/3 where q_1 = (-1 + I sqrt(3))/2 and q_2 = (-1 - I sqrt(3))/2 is given for H_{3,2}(x) instead. - Michael Somos, Nov 01 2024

Examples

			1.041865355098909...
		

Crossrefs

Programs

  • Maple
    Digits:=101: evalf(sum(1/(3*n+1)!, n=0..infinity)); # Michal Paulovic, Aug 20 2023
  • Mathematica
    RealDigits[ N[ (-Cos[Sqrt[3]/2] + E^(3/2) + Sqrt[3]*Sin[Sqrt[3]/2])/(3*Sqrt[E]), 105]][[1]] (* Jean-François Alcover, Nov 08 2012 *)
  • PARI
    suminf(n=0,1/(3*n+1)!) \\ Michel Marcus, Aug 20 2023

Formula

Equals (exp(1) + w^2*exp(w) + w*exp(w^2))/3, where w = exp(2*Pi*i/3).
A143819 + A143820 + A143821 = exp(1).
Equals Sum_{n>=0} 1/(3*n+1)!. - Michal Paulovic, Aug 20 2023
Continued fraction: 1 + 1/(24 - 24/(211 - 210/(721 - ... - P(n-1)/((P(n) + 1) - ... )))), where P(n) = (3*n - 1)*(3*n)*(3*n + 1) for n >= 1. Cf. A346441. - Peter Bala, Feb 22 2024
Equals (exp(1) + 2*exp(-1/2)*cos(sqrt(3)/2-2*Pi/3))/3. [Ungar, p.690] - Michael Somos, Nov 01 2024

Extensions

Offset corrected by R. J. Mathar, Feb 05 2009

A143821 Decimal expansion of the constant 1/2! + 1/5! + 1/8! + ... = 0.50835 81599 84216 ... .

Original entry on oeis.org

5, 0, 8, 3, 5, 8, 1, 5, 9, 9, 8, 4, 2, 1, 6, 8, 6, 3, 5, 4, 2, 6, 9, 3, 9, 2, 6, 7, 1, 9, 9, 9, 0, 3, 6, 2, 3, 4, 3, 2, 3, 0, 2, 2, 6, 8, 6, 2, 5, 0, 3, 5, 9, 9, 0, 3, 5, 3, 3, 7, 1, 3, 9, 6, 1, 5, 4, 1, 1, 4, 4, 2, 7, 1, 9, 2, 6, 7, 9, 9, 3, 1, 8, 7, 6, 4, 7, 0, 2, 4, 0, 0, 9, 5, 4, 6, 5, 8, 2, 5
Offset: 0

Views

Author

Peter Bala, Sep 03 2008

Keywords

Comments

Define a sequence of real numbers R(n) by R(n) := Sum_{k >= 0} (3*k)^n/(3*k)! for n = 0,1,2... . This constant is R(1); the decimal expansions of R(0) = 1 + 1/3!+ 1/6! + 1/9! + ... and R(2) - R(1) = 1/1! + 1/4! + 1/7! + ... may be found in A143819 and A143820. It is easy to verify that the sequence R(n) satisfies the recurrence relation u(n+3) = 3*u(n+2) - 2*u(n+1) + Sum_{i = 0..n} binomial(n,i) *3^(n-i)*u(i). Hence R(n) is an integral linear combination of R(0), R(1) and R(2) and so also an integral linear combination of R(0), R(1) and R(2) - R(1). Some examples are given below.

Examples

			R(n) as a linear combination of R(0), R(1) and R(2) - R(1).
=======================================
..R(n)..|.....R(0).....R(1)...R(2)-R(1)
=======================================
..R(3)..|.......1........1........3....
..R(4)..|.......6........2........7....
..R(5)..|......25.......11.......16....
..R(6)..|......91.......66.......46....
..R(7)..|.....322......352......203....
..R(8)..|....1232.....1730.....1178....
..R(9)..|....5672.....8233.....7242....
..R(10).|...32202....39987....43786....
...
The column entries are from A143815, A143816 and A143817.
		

Crossrefs

Programs

  • Mathematica
    RealDigits[ N[ -((Cos[Sqrt[3]/2] - E^(3/2) + Sqrt[3]*Sin[Sqrt[3]/2])/(3*Sqrt[E])), 105]][[1]] (* Jean-François Alcover, Nov 08 2012 *)

Formula

Constant = (exp(1) + w*exp(w) + w^2*exp(w^2))/3, where w = exp(2*Pi*i/3). A143819 + A143820 + A143821 = exp(1).
Continued fraction: 1/(2 - 2/(61 - 60/(337 - 336/(991 - ... - P(n-1)/((P(n) + 1) - ... ))))), where P(n) = (3*n)*(3*n + 1)*(3*n + 2) for n >= 1. Cf. A346441. - Peter Bala, Feb 22 2024

Extensions

Offset corrected by R. J. Mathar, Feb 05 2009

A099948 Number of partitions of n such that the number of blocks is congruent to 3 mod 4.

Original entry on oeis.org

1, 6, 25, 90, 302, 994, 3487, 15210, 92489, 713988, 5979480, 50184316, 412595913, 3317961318, 26241631409, 205918294518, 1622545217510, 13045429410974, 109152638729439, 969395726250226, 9255388478615017, 94973500733767432, 1034488089509527120
Offset: 3

Views

Author

N. J. A. Sloane, Nov 12 2004

Keywords

Examples

			a(11)=92489 because stirling2(11,3)+stirling2(11,7)+stirling2(11,11)=92489.
		

Crossrefs

Programs

  • Maple
    seq(sum(stirling2(n,3+4*k),k=0..(n-3)/4),n=3..26); # Emeric Deutsch, Dec 15 2004
    # second Maple program:
    with(combinat):
    b:= proc(n, i, m) option remember; `if`(n=0, `if`(m=3, 1, 0),
         `if`(i<1, 0, add(multinomial(n, n-i*j, i$j)/j!*
          b(n-i*j, i-1, irem(m+j, 4)), j=0..n/i)))
        end:
    a:= n-> b(n$2, 0):
    seq(a(n), n=3..30);  # Alois P. Heinz, Sep 17 2015
  • Mathematica
    Table[Sum[StirlingS2[n, 3+4*k], {k, 0, (n-3)/4}], {n, 3, 26}] (* Jean-François Alcover, Feb 18 2016, after Emeric Deutsch *)

Formula

G.f.: sum(x^k/[(1-x)(1-2x)...(1-kx)], k=3 (mod 4)). - Emeric Deutsch, Dec 15 2004

Extensions

More terms from Emeric Deutsch, Dec 15 2004
Showing 1-10 of 12 results. Next