cp's OEIS Frontend

This is a front-end for the Online Encyclopedia of Integer Sequences, made by Christian Perfect. The idea is to provide OEIS entries in non-ancient HTML, and then to think about how they're presented visually. The source code is on GitHub.

Showing 1-10 of 11 results. Next

A143815 Let A(0)=1, B(0)=0 and C(0)=0. Let B(n+1) = Sum_{k = 0..n} binomial(n,k)*A(k), C(n+1) = Sum_{k = 0..n} binomial(n,k)*B(k) and A(n+1) = Sum_{k = 0..n} binomial(n,k)*C(k). This entry gives the sequence A(n).

Original entry on oeis.org

1, 0, 0, 1, 6, 25, 91, 322, 1232, 5672, 32202, 209143, 1432454, 9942517, 69363840, 490303335, 3565609732, 27118060170, 218183781871, 1861370544934, 16729411124821, 156706028787827, 1514442896327792, 14999698898942772, 151838974745743228, 1571513300578303070
Offset: 0

Views

Author

Peter Bala, Sep 03 2008

Keywords

Comments

Compare with A024429 and A024430.
This sequence and its companion sequences B(n) = A143816(n) and C(n) = A143817(n) may be viewed as generalizations of the Bell numbers A000110. Define a sequence R(n) of real numbers by R(n) = Sum_{k >= 0} (3*k)^n/(3*k)! for n = 0, 1, 2, .... It is easy to verify that this sequence satisfies the recurrence relation u(n+3) = 3*u(n+2) - 2*u(n+1) + Sum_{i = 0..n} binomial(n, i)*3^(n-i)*u(i). Hence R(n) is an integral linear combination of R(0), R(1) and R(2). Some examples are given below.
To find the precise form of the linear relation define two other sequences of real numbers by S(n) = Sum_{k >= 0} (3*k+1)^n/(3*k+1)! and T(n) = Sum_{k >= 0} (3*k+2)^n/(3*k+2)! for n = 0, 1, 2, .... Both S(n) and T(n) satisfy the above recurrence. Then by means of the identities S(n+1) = Sum_{i = 0..n} binomial(n, i)*R(i), T(n+1) = Sum_{i = 0..n} binomial(n, i)*S(i) and R(n+1) = Sum_{i = 0..n} binomial(n, i)*T(i) we obtain the result R(n) = A(n)*R(0) + (B(n) - C(n))*R(1) + C(n)*R(2) = A(n)*R(0) + B(n)*R(1) + C(n)*(R(2) - R(1)) (with corresponding expressions for S(n) and T(n)). This generalizes the Dobinski's relation for the Bell numbers Sum_{k >= 0} k^n/k! = A000110(n)*exp(1).
Some examples of R(n) as a linear combination of R(0), R(1) and R(2) - R(1) are given below. The decimal expansions of R(0) = 1 + 1/3! + 1/6! + 1/9! + ..., R(2) - R(1) = 1/1! + 1/4! + 1/7! + ... and R(1) = 1/2! + 1/5! + 1/8! + ... may be found in A143819, A143820 and A143821 respectively. Compare with A143628 through A143631.
For n > 0, the number of partitions of {1,2,...,n} into 3,6,9,... classes. - Geoffrey Critzer, Mar 05 2010

Examples

			R(n) as a linear combination of R(i), i = 0..2.
  ==================================
  R(n)  |     R(0)    R(1)    R(2)
  ==================================
  R(3)  |       1      -2       3
  R(4)  |       6      -5       7
  R(5)  |      25      -5      16
  R(6)  |      91      20      46
  R(7)  |     322     149     203
  R(8)  |    1232     552    1178
  R(9)  |    5672     991    7242
  R(10) |   32202   -3799   43786
  ...
Column 2 of the above table is A143818.
R(n) as a linear combination of R(0),R(1) and R(2) - R(1).
  =====================================
  R(n)  |     R(0)     R(1)   R(2)-R(1)
  =====================================
  R(3)  |       1        1        3
  R(4)  |       6        2        7
  R(5)  |      25       11       16
  R(6)  |      91       66       46
  R(7)  |     322      352      203
  R(8)  |    1232     1730     1178
  R(9)  |    5672     8233     7242
  R(10) |   32202    39987    43786
  ...
		

Crossrefs

Programs

  • Maple
    # (1)
    M:=24: a:=array(0..100): b:=array(0..100): c:=array(0..100):
    a[0]:=1: b[0]:=0: c[0]:=0:
    for n from 1 to M do
    b[n]:=add(binomial(n-1,k)*a[k], k=0..n-1);
    c[n]:=add(binomial(n-1,k)*b[k], k=0..n-1);
    a[n]:=add(binomial(n-1,k)*c[k], k=0..n-1);
    end do:
    A143815:=[seq(a[n], n=0..M)];
    # (2)
    seq(add(Stirling2(n,3*i),i = 0..floor(n/3)), n = 0..24);
    # third Maple program:
    b:= proc(n, t) option remember; `if`(n=0, irem(t, 2),
          add(b(n-j, irem(t+1, 3))*binomial(n-1, j-1), j=1..n))
        end:
    a:= n-> b(n, 1):
    seq(a(n), n=0..25);  # Alois P. Heinz, Feb 20 2018
  • Mathematica
    a = Exp[x] - 1; f[x_] := 1/3 (E^x + 2 E^(-x/2) Cos[(Sqrt[3] x)/2]); CoefficientList[Series[f[a], {x, 0, 25}], x]*Table[n!, {n, 0, 25}] (* Geoffrey Critzer, Mar 05 2010 *)
  • PARI
    Bell_poly(n, x) = exp(-x)*suminf(k=0, k^n*x^k/k!);
    a(n) = my(w=(-1+sqrt(3)*I)/2); round(Bell_poly(n, 1)+Bell_poly(n, w)+Bell_poly(n, w^2))/3; \\ Seiichi Manyama, Oct 13 2022

Formula

a(n) = Sum_{k = 0..floor(n/3)} Stirling2(n, 3*k).
Let w = exp(2*Pi*i/3) and set F(x) = (exp(x) + exp(w*x) + exp(w^2*x))/3 = 1 + x^3/3! + x^6/6! + ... . Then the e.g.f. for the sequence is F(exp(x) - 1).
A143815(n) + A143816(n) + A143817(n) = Bell(n).
E.g.f. is B(A(x)) where A(x) = exp(x) - 1 and B(x) = (1/3)*(exp(x) + 2*exp(-x/2)*cos(sqrt(3)*x/2)). - Geoffrey Critzer, Mar 05 2010
a(n) = ( Bell_n(1) + Bell_n(w) + Bell_n(w^2) )/3, where Bell_n(x) is n-th Bell polynomial and w = exp(2*Pi*i/3). - Seiichi Manyama, Oct 13 2022
a(n) ~ n^n / (3 * (LambertW(n))^n * exp(n+1-n/LambertW(n)) * sqrt(1+LambertW(n))). - Vaclav Kotesovec, Jun 10 2025

A346441 Decimal expansion of the constant Sum_{k>=0} (-1)^k/(3*k)!.

Original entry on oeis.org

8, 3, 4, 7, 1, 9, 4, 6, 8, 5, 7, 7, 2, 1, 0, 9, 6, 2, 2, 1, 9, 2, 8, 3, 2, 3, 9, 2, 0, 8, 3, 3, 0, 0, 7, 0, 8, 4, 0, 3, 7, 9, 0, 5, 1, 9, 9, 8, 2, 6, 9, 7, 6, 7, 6, 2, 7, 6, 9, 5, 1, 0, 7, 9, 5, 2, 5, 9, 2, 7, 8, 4, 3, 6, 8, 7, 2, 2, 2, 2, 3, 8, 9, 7, 3, 0, 0
Offset: 0

Views

Author

Sean A. Irvine, Jul 17 2021

Keywords

Examples

			0.8347194685772109622192832392...
		

Crossrefs

Programs

  • Mathematica
    RealDigits[Sum[(-1)^k/(3*k)!, {k, 0, Infinity}], 10, 100][[1]] (* Amiram Eldar, Jul 18 2021 *)
  • PARI
    sumalt(k=0, (-1)^k/(3*k)!) \\ Michel Marcus, Jul 18 2021

Formula

Equals 1/(3*e) + 2*sqrt(e)*cos(sqrt(3)/2)/3. - Amiram Eldar, Jul 18 2021
Continued fraction: 1/(1 + 1/(5 + 6/(119 + 120/(503 + ... + P(n-1)/((P(n) - 1) + ... ))))), where P(n) = (3*n)*(3*n - 1)*(3*n - 2) for n >= 1. See Bowman and Mc Laughlin, Corollary 10, p. 341 with m = 1, who also show that the constant is irrational. - Peter Bala, Feb 21 2024

A143817 Let A(0) = 1, B(0) = 0 and C(0) = 0. Let B(n+1) = Sum_{k = 0..n} binomial(n,k)* A(k), C(n+1) = Sum_{k = 0..n} binomial(n,k)*B(k) and A(n+1) = Sum_{k = 0..n} binomial(n,k)*C(k). This entry gives the sequence C(n).

Original entry on oeis.org

0, 0, 1, 3, 7, 16, 46, 203, 1178, 7242, 43786, 259634, 1540540, 9414639, 61061613, 428890726, 3266930298, 26581123093, 226393705465, 1986997358251, 17827284972818, 163278469610570, 1531115974317975, 14771302315885372, 147267150734530892, 1521022490460243316
Offset: 0

Views

Author

Peter Bala, Sep 03 2008

Keywords

Comments

Compare with A024429 and A024430.
This sequence and its companion sequences A(n) = A143815 and B(n) = A143816 may be viewed as generalizations of the Bell numbers A000110. Define R(n) = Sum_{k >= 0} (3k)^n/(3k)! for n = 0,1,2,.... Then the real number R(n) is an integral linear combination of R(0) = 1 + 1/3! + 1/6! + ...., R(2) - R(1) = 1/1! + 1/4! + 1/7! + ... and R(1) = 1/2! + 1/5! + 1/8! + ... . Some examples are given below. The precise result is R(n) = A(n)*R(0) + B(n)*R(1) + C(n)*(R(2)-R(1)). This generalizes the Dobinski relation for the Bell numbers: Sum_{k >= 0} k^n/k! = A000110(n)*exp(1). See A143815 for more details. Compare with A143628 through A143631. The decimal expansions of R(0), R(2) - R(1) and R(1) may be found in A143819, A143820 and A143821 respectively.

Examples

			R(n) as a linear combination of R(0),R(1)
and R(2) - R(1).
=======================================
..R(n)..|.....R(0).....R(1)...R(2)-R(1)
=======================================
..R(3)..|.......1........1........3....
..R(4)..|.......6........2........7....
..R(5)..|......25.......11.......16....
..R(6)..|......91.......66.......46....
..R(7)..|.....322......352......203....
..R(8)..|....1232.....1730.....1178....
..R(9)..|....5672.....8233.....7242....
..R(10).|...32202....39987....43786....
		

Crossrefs

Programs

  • Maple
    # (1)
    M:=24: a:=array(0..100): b:=array(0..100): c:=array(0..100):
    a[0]:=1: b[0]:=0: c[0]:=0:
    for n from 1 to M do
    b[n]:=add(binomial(n-1,k)*a[k], k=0..n-1);
    c[n]:=add(binomial(n-1,k)*b[k], k=0..n-1);
    a[n]:=add(binomial(n-1,k)*c[k], k=0..n-1);
    end do:
    A143817:=[seq(c[n], n=0..M)];
    # (2)
    seq(add(Stirling2(n,3*i+2),i = 0..floor((n-2)/3)), n = 0..24);
    # third Maple program:
    b:= proc(n, t) option remember; `if`(n=0, irem(t, 2),
          add(b(n-j, irem(t+1, 3))*binomial(n-1, j-1), j=1..n))
        end:
    a:= n-> b(n, 2):
    seq(a(n), n=0..25);  # Alois P. Heinz, Feb 20 2018
  • Mathematica
    a[n_] := Sum[ StirlingS2[n, 3*i+2], {i, 0, (n-2)/3}]; Table[a[n], {n, 0, 23}] (* Jean-François Alcover, Mar 06 2013 *)
  • PARI
    Bell_poly(n, x) = exp(-x)*suminf(k=0, k^n*x^k/k!);
    a(n) = my(w=(-1+sqrt(3)*I)/2); round(Bell_poly(n, 1)+w*Bell_poly(n, w)+w^2*Bell_poly(n, w^2))/3; \\ Seiichi Manyama, Oct 13 2022

Formula

a(n) = Sum_{k = 0..floor((n-2)/3)} Stirling2(n,3k+2).
Let w = exp(2*Pi*i/3) and set F(x) = (exp(x) + w*exp(w*x) + w^2*exp(w^2*x))/3 = x^2/2! + x^5/5! + x^8/8! + ... . Then the e.g.f. for the sequence is F(exp(x)-1).
A143815(n) + A143816(n) + A143817(n) = Bell(n).
a(n) = ( Bell_n(1) + w * Bell_n(w) + w^2 * Bell_n(w^2) )/3, where Bell_n(x) is n-th Bell polynomial and w = exp(2*Pi*i/3). - Seiichi Manyama, Oct 13 2022

Extensions

Spelling/notation corrections by Charles R Greathouse IV, Mar 18 2010

A100732 a(n) = (3*n)!.

Original entry on oeis.org

1, 6, 720, 362880, 479001600, 1307674368000, 6402373705728000, 51090942171709440000, 620448401733239439360000, 10888869450418352160768000000, 265252859812191058636308480000000
Offset: 0

Views

Author

Ralf Stephan, Dec 08 2004

Keywords

Comments

a(n) equals (-1)^n times the determinant of the (3n+1) X (3n+1) matrix with consecutive integers from 1 to 3n+1 along the main diagonal, consecutive integers from 2 to 3n+1 along the superdiagonal, consecutive integers from 1 to 3n along the subdiagonal, and 1's everywhere else (see Mathematica code below). - John M. Campbell, Jul 12 2011

Crossrefs

Programs

  • Haskell
    a100732 = a000142 . a008585  -- Reinhard Zumkeller, Feb 19 2013
  • Magma
    [Factorial(3*n): n in [0..15]]; // Vincenzo Librandi, Sep 24 2011
    
  • Mathematica
    Table[(-1)^n*Det[Array[KroneckerDelta[#1, #2]*(#1 - 1) + KroneckerDelta[#1, #2 - 1]*(#1) + KroneckerDelta[#1, #2 + 1]*(#1 - 2) + 1 &, {3*n + 1, 3*n + 1}]], {n, 0, 24}] (* John M. Campbell, Jul 12 2011 *)
    (3Range[0,10])! (* Harvey P. Dale, Sep 23 2011 *)
  • Sage
    [factorial(3*n) for n in range(0, 11)] # Peter Luschny, Jun 06 2016
    

Formula

a(n) = A000142(A008585(n)).
E.g.f.: 1/(1-x^3).
From Ilya Gutkovskiy, Jan 20 2017: (Start)
a(n) ~ sqrt(2*Pi)*3^(3*n+1/2)*n^(3*n+1/2)/exp(3*n).
Sum_{n>=0} 1/a(n) = (exp(3/2) + 2*cos(sqrt(3)/2))/(3*exp(1/2)) = A143819. (End)
Sum_{n>=0} (-1)^n/a(n) = (1 + 2*exp(3/2)*cos(sqrt(3)/2))/(3*e). - Amiram Eldar, Feb 14 2021
a(n) = A143084(2n,n). - Alois P. Heinz, Jul 12 2024

A143816 Let A(0) = 1, B(0) = 0 and C(0) = 0. Let B(n+1) = Sum_{k = 0..n} binomial(n,k)* A(k), C(n+1) = Sum_{k = 0..n} binomial(n,k)*B(k) and A(n+1) = Sum_{k = 0..n} binomial(n,k)*C(k). This entry gives the sequence B(n).

Original entry on oeis.org

0, 1, 1, 1, 2, 11, 66, 352, 1730, 8233, 39987, 209793, 1240603, 8287281, 60473869, 463764484, 3647602117, 29165686541, 237499318823, 1984374301872, 17167462137733, 154885317758354, 1461156867801556, 14381004640256202, 146852743814531169, 1546054541191452967
Offset: 0

Views

Author

Peter Bala, Sep 03 2008

Keywords

Comments

Compare with A024429 and A024430.
This sequence and its companion sequences A(n) = A143815 and C(n) = A143817 may be viewed as generalizations of the Bell numbers A000110. Define R(n) = Sum_{k >= 0} (3k)^n/(3k)! for n = 0,1,2,.... Then the real number R(n) is an integral linear combination of R(0) = 1 + 1/3! + 1/6! + ...., R(2) - R(1) = 1/1! + 1/4! + 1/7! + ... and R(1) = 1/2! + 1/5! + 1/8! + .... Some examples are given below. The precise result is R(n) = A(n)*R(0) + B(n)*R(1) + C(n)*(R(2)-R(1)). This generalizes the Dobinski relation for the Bell numbers: Sum_{k >= 0} k^n/k! = A000110(n)*exp(1). See A143815 for more details. Compare with A143628 through A143631. The decimal expansions of R(0), R(2) - R(1) and R(1) may be found in A143819, A143820 and A143821 respectively.

Examples

			R(n) as a linear combination of R(0),R(1)
and R(2) - R(1).
=======================================
..R(n)..|.....R(0).....R(1)...R(2)-R(1)
=======================================
..R(3)..|.......1........1........3....
..R(4)..|.......6........2........7....
..R(5)..|......25.......11.......16....
..R(6)..|......91.......66.......46....
..R(7)..|.....322......352......203....
..R(8)..|....1232.....1730.....1178....
..R(9)..|....5672.....8233.....7242....
..R(10).|...32202....39987....43786....
		

Crossrefs

Programs

  • Maple
    # (1)
    M:=24: a:=array(0..100): b:=array(0..100): c:=array(0..100):
    a[0]:=1: b[0]:=0: c[0]:=0:
    for n from 1 to M do
    b[n]:=add(binomial(n-1,k)*a[k], k=0..n-1);
    c[n]:=add(binomial(n-1,k)*b[k], k=0..n-1);
    a[n]:=add(binomial(n-1,k)*c[k], k=0..n-1);
    end do:
    A143816:=[seq(b[n], n=0..M)];
    # (2)
    seq(add(Stirling2(n,3*i+1),i = 0..floor((n-1)/3)), n = 0..24);
    # third Maple program:
    b:= proc(n, t) option remember; `if`(n=0, irem(t, 2),
          add(b(n-j, irem(t+1, 3))*binomial(n-1, j-1), j=1..n))
        end:
    a:= n-> b(n, 0):
    seq(a(n), n=0..25);  # Alois P. Heinz, Feb 20 2018
  • Mathematica
    m = 23; a[0] = 1; b[0] = 0; c[0] = 0; For[n = 1, n <= m, n++, b[n] = Sum[Binomial[n - 1, k]*a[k], {k, 0, n - 1}]; c[n] = Sum[Binomial[n - 1, k]*b[k], {k, 0, n - 1}]; a[n] = Sum[Binomial[n - 1, k]*c[k], {k, 0, n - 1}]]; A143816 = Table[ b[n], {n, 0, m}] (* Jean-François Alcover, Mar 06 2013, after Maple *)
  • PARI
    Bell_poly(n, x) = exp(-x)*suminf(k=0, k^n*x^k/k!);
    a(n) = my(w=(-1+sqrt(3)*I)/2); round(Bell_poly(n, 1)+w^2*Bell_poly(n, w)+w*Bell_poly(n, w^2))/3; \\ Seiichi Manyama, Oct 13 2022

Formula

a(n) = Sum_{k = 0..floor((n-1)/3)} Stirling2(n,3k+1).
Let w = exp(2*Pi*i/3) and set F(x) = (exp(x) + w^2*exp(w*x) + w*exp(w^2*x))/3 = x + x^4/4! + x^7/7! + ... . Then the e.g.f. for the sequence is F(exp(x)-1). A143815(n) + A143816(n) + A143817(n) = Bell(n).
a(n) = ( Bell_n(1) + w^2 * Bell_n(w) + w * Bell_n(w^2) )/3, where Bell_n(x) is n-th Bell polynomial and w = exp(2*Pi*i/3). - Seiichi Manyama, Oct 13 2022

Extensions

Spelling/notation corrections by Charles R Greathouse IV, Mar 18 2010

A143820 Decimal expansion of the constant 1/1! + 1/4! + 1/7! + ...

Original entry on oeis.org

1, 0, 4, 1, 8, 6, 5, 3, 5, 5, 0, 9, 8, 9, 0, 9, 8, 4, 6, 3, 0, 1, 3, 3, 6, 6, 1, 5, 0, 2, 1, 5, 2, 7, 3, 8, 7, 6, 9, 7, 0, 8, 3, 5, 7, 1, 7, 2, 4, 1, 6, 3, 4, 5, 9, 5, 4, 5, 7, 3, 9, 2, 5, 5, 4, 2, 3, 5, 5, 1, 7, 4, 1, 1, 6, 1, 0, 7, 4, 0, 2, 9, 5, 9, 2, 8, 6, 2, 6, 7, 3, 9, 3, 0, 1, 0, 0, 6, 5, 5, 2
Offset: 1

Views

Author

Peter Bala, Sep 03 2008

Keywords

Comments

Define a sequence R(n) of real numbers by R(n) := Sum_{k >= 0} (3*k)^n/(3*k)! for n = 0,1,2,... . This constant is R(2) - R(1); the decimal expansions of R(0) = 1 + 1/3! + 1/6! + ... and R(1) = 1/2! + 1/5! + 1/8! + ... may be found in A143819 and A143821. It is easy to verify that the sequence R(n) satisfies the recurrence relation u(n+3) = 3*u(n+2) - 2*u(n+1) + Sum_{i = 0..n} binomial(n,i) * 3^(n-i)*u(i). Hence R(n) is an integral linear combination of R(0), R(1) and R(2) and so also an integral linear combination of R(0), R(1) and R(2) - R(1).
R(n) as a linear combination of R(0), R(1) and R(2) - R(1).
========================================
| linear combination of
R(n) | R(0) R(1) R(2) - R(1)
========================================
R(3) | 1 1 3
R(4) | 6 2 7
R(5) | 25 11 16
R(6) | 91 66 46
R(7) | 322 352 203
R(8) | 1232 1730 1178
R(9) | 5672 8233 7242
R(10) | 32202 39987 43786
...
The column entries are from A143815, A143816 and A143817.
The Abraham Ungar 1982 article defines H_{n,r}(z) = Sum_{k>=0} z^(nk+r)/(nk+r)! as equation (1). The constant is H_{3,1}(1). In equation (13) H_{3,1}(x) = (exp(x) + 2 * exp(-x/2) * cos(sqrt(3)/2*x - 2*Pi/3))/3. In equation (12) the expression H_{3,1}(x) = (e^x + q_2 e^{q_1 x} + q_1 e^{q_2 x})/3 where q_1 = (-1 + I sqrt(3))/2 and q_2 = (-1 - I sqrt(3))/2 is given for H_{3,2}(x) instead. - Michael Somos, Nov 01 2024

Examples

			1.041865355098909...
		

Crossrefs

Programs

  • Maple
    Digits:=101: evalf(sum(1/(3*n+1)!, n=0..infinity)); # Michal Paulovic, Aug 20 2023
  • Mathematica
    RealDigits[ N[ (-Cos[Sqrt[3]/2] + E^(3/2) + Sqrt[3]*Sin[Sqrt[3]/2])/(3*Sqrt[E]), 105]][[1]] (* Jean-François Alcover, Nov 08 2012 *)
  • PARI
    suminf(n=0,1/(3*n+1)!) \\ Michel Marcus, Aug 20 2023

Formula

Equals (exp(1) + w^2*exp(w) + w*exp(w^2))/3, where w = exp(2*Pi*i/3).
A143819 + A143820 + A143821 = exp(1).
Equals Sum_{n>=0} 1/(3*n+1)!. - Michal Paulovic, Aug 20 2023
Continued fraction: 1 + 1/(24 - 24/(211 - 210/(721 - ... - P(n-1)/((P(n) + 1) - ... )))), where P(n) = (3*n - 1)*(3*n)*(3*n + 1) for n >= 1. Cf. A346441. - Peter Bala, Feb 22 2024
Equals (exp(1) + 2*exp(-1/2)*cos(sqrt(3)/2-2*Pi/3))/3. [Ungar, p.690] - Michael Somos, Nov 01 2024

Extensions

Offset corrected by R. J. Mathar, Feb 05 2009

A332890 Decimal expansion of Sum_{k>=0} 1/(4*k)!.

Original entry on oeis.org

1, 0, 4, 1, 6, 9, 1, 4, 7, 0, 3, 4, 1, 6, 9, 1, 7, 4, 7, 9, 3, 9, 4, 2, 1, 1, 1, 4, 1, 0, 0, 0, 1, 9, 1, 4, 3, 1, 6, 6, 9, 1, 9, 7, 6, 6, 4, 9, 1, 8, 9, 2, 9, 6, 6, 2, 0, 3, 7, 4, 9, 7, 3, 5, 0, 4, 5, 9, 3, 4, 7, 2, 8, 9, 1, 1, 8, 4, 7, 7, 3, 1, 7, 4, 1, 1, 0
Offset: 1

Views

Author

Bernard Schott, Mar 01 2020

Keywords

Comments

For q integer >= 1, Sum_{m>=0} 1/(q*m)! = (1/q) * Sum_{k=1..q} exp(X_k) where X_1, X_2, ..., X_q are the q-th roots of unity.

Examples

			1.0416914703416917479394211141000191431669197664918929...
		

References

  • Serge Francinou, Hervé Gianella, Serge Nicolas, Exercices de Mathématiques, Oraux X-ENS, Analyse 2, problème 3.10 p. 182, Cassini, Paris, 2004.

Crossrefs

Cf. A001113 (Sum 1/k!), A073743 (Sum 1/(2k)!), A143819 (Sum 1/(3k)!), this sequence (Sum 1/(4k)!), A269296 (Sum 1/(5k)!), A332892 (Sum 1/(6k)!), A346441.

Programs

  • Maple
    evalf(1/2 * (cos(1) + cosh(1)), 100);
  • Mathematica
    RealDigits[Sum[1/(4n)!,{n,0,\[Infinity]}],10,120][[1]] (* Harvey P. Dale, Apr 18 2023 *)
  • PARI
    suminf(k=0,(1 + (-1)^k)/((2*k)!))/2 \\ Hugo Pfoertner, Mar 01 2020
    
  • PARI
    suminf(k=0, 1/(4*k)!) \\ Michel Marcus, Mar 02 2020

Formula

Equals (1/2) * (cos(1) + cosh(1)).
Equals (1/2) * Sum_{k>=0} (1 + (-1)^k)/((2*k)!). - Peter Luschny, Mar 01 2020
Sum_{k>=0} (-1)^k / (4*k)! = cos(1/sqrt(2)) * cosh(1/sqrt(2)) = 0.958358132833... - Vaclav Kotesovec, Mar 02 2020
Continued fraction: 1 + 1/(24 - 24/(1681 - 1680/(11881 - ... - P(n-1)/((P(n) + 1) - ... )))), where P(n) = (4*n)*(4*n - 1)*(4*n - 2)*(4*n - 3) for n >= 1. Cf. A346441. - Peter Bala, Feb 22 2024

Extensions

More terms from Hugo Pfoertner, Mar 02 2020

A143821 Decimal expansion of the constant 1/2! + 1/5! + 1/8! + ... = 0.50835 81599 84216 ... .

Original entry on oeis.org

5, 0, 8, 3, 5, 8, 1, 5, 9, 9, 8, 4, 2, 1, 6, 8, 6, 3, 5, 4, 2, 6, 9, 3, 9, 2, 6, 7, 1, 9, 9, 9, 0, 3, 6, 2, 3, 4, 3, 2, 3, 0, 2, 2, 6, 8, 6, 2, 5, 0, 3, 5, 9, 9, 0, 3, 5, 3, 3, 7, 1, 3, 9, 6, 1, 5, 4, 1, 1, 4, 4, 2, 7, 1, 9, 2, 6, 7, 9, 9, 3, 1, 8, 7, 6, 4, 7, 0, 2, 4, 0, 0, 9, 5, 4, 6, 5, 8, 2, 5
Offset: 0

Views

Author

Peter Bala, Sep 03 2008

Keywords

Comments

Define a sequence of real numbers R(n) by R(n) := Sum_{k >= 0} (3*k)^n/(3*k)! for n = 0,1,2... . This constant is R(1); the decimal expansions of R(0) = 1 + 1/3!+ 1/6! + 1/9! + ... and R(2) - R(1) = 1/1! + 1/4! + 1/7! + ... may be found in A143819 and A143820. It is easy to verify that the sequence R(n) satisfies the recurrence relation u(n+3) = 3*u(n+2) - 2*u(n+1) + Sum_{i = 0..n} binomial(n,i) *3^(n-i)*u(i). Hence R(n) is an integral linear combination of R(0), R(1) and R(2) and so also an integral linear combination of R(0), R(1) and R(2) - R(1). Some examples are given below.

Examples

			R(n) as a linear combination of R(0), R(1) and R(2) - R(1).
=======================================
..R(n)..|.....R(0).....R(1)...R(2)-R(1)
=======================================
..R(3)..|.......1........1........3....
..R(4)..|.......6........2........7....
..R(5)..|......25.......11.......16....
..R(6)..|......91.......66.......46....
..R(7)..|.....322......352......203....
..R(8)..|....1232.....1730.....1178....
..R(9)..|....5672.....8233.....7242....
..R(10).|...32202....39987....43786....
...
The column entries are from A143815, A143816 and A143817.
		

Crossrefs

Programs

  • Mathematica
    RealDigits[ N[ -((Cos[Sqrt[3]/2] - E^(3/2) + Sqrt[3]*Sin[Sqrt[3]/2])/(3*Sqrt[E])), 105]][[1]] (* Jean-François Alcover, Nov 08 2012 *)

Formula

Constant = (exp(1) + w*exp(w) + w^2*exp(w^2))/3, where w = exp(2*Pi*i/3). A143819 + A143820 + A143821 = exp(1).
Continued fraction: 1/(2 - 2/(61 - 60/(337 - 336/(991 - ... - P(n-1)/((P(n) + 1) - ... ))))), where P(n) = (3*n)*(3*n + 1)*(3*n + 2) for n >= 1. Cf. A346441. - Peter Bala, Feb 22 2024

Extensions

Offset corrected by R. J. Mathar, Feb 05 2009

A269296 Decimal expansion of Sum_{k>=0} 1/(5k)!.

Original entry on oeis.org

1, 0, 0, 8, 3, 3, 3, 6, 0, 8, 9, 0, 7, 2, 9, 0, 2, 8, 9, 9, 7, 6, 4, 5, 3, 6, 6, 7, 3, 5, 4, 8, 3, 8, 7, 8, 6, 0, 7, 1, 0, 7, 7, 2, 8, 1, 5, 7, 9, 5, 4, 3, 1, 0, 2, 0, 0, 3, 0, 5, 9, 0, 7, 4, 9, 2, 7, 0, 7, 5, 5, 0, 4, 8, 4, 8, 1, 1, 1, 0, 8, 4, 1, 1, 4, 8, 5, 5, 9, 4, 1, 6, 1, 7, 0, 0, 6, 5, 7, 8, 1, 9, 2, 5, 2, 6, 8, 9, 9, 1, 9, 4, 6, 9, 7, 5, 7, 7, 4, 2
Offset: 1

Views

Author

Ilya Gutkovskiy, Feb 21 2016

Keywords

Comments

From Vaclav Kotesovec, Feb 24 2016: (Start)
Sum_{k>=0} 1/k! = A001113 = exp(1).
Sum_{k>=0} 1/(2k)! = A073743 = cosh(1).
Sum_{k>=0} 1/(3k)! = A143819 = (2*cos(sqrt(3)/2)*exp(-1/2) + exp(1))/3.
Sum_{k>=0} 1/(4k)! = (cos(1) + cosh(1))/2 = 1.0416914703416917479394211141...
(End)
For q integer >= 1, Sum_{m>=0} 1/(q*m)! = (1/q) * Sum_{k=1..q} exp(X_k) where X_1, X_2, ..., X_q are the q-th roots of unity. - Bernard Schott, Mar 02 2020
Continued fraction: 1 + 1/(120 - 120/(30241 - 30240/(360361 - ... - P(n-1)/((P(n) + 1) - ... )))), where P(n) = (5*n)*(5*n - 1)*(5*n - 2)*(5*n - 3)*(5*n - 4) for n >= 1. Cf. A346441. - Peter Bala, Feb 22 2024

Examples

			1 + 1/5! + 1/10! + 1/15! + ... = 1.008333608907290289976453667354838786...
		

Crossrefs

Cf. A100734.
Cf. A001113 (Sum 1/k!), A073743 (Sum 1/(2k)!), A143819 (Sum 1/(3k)!), A332890 (Sum 1/(4k)!), this sequence (Sum 1/(5k)!), A332892 (Sum 1/(6k)!), A346441.

Programs

  • Maple
    evalf((exp(1) + 2*exp(-(sqrt(5) + 1)/4) * cos(sqrt((5 - sqrt(5))/2)/2) + 2*exp((sqrt(5) - 1)/4) * cos(sqrt((5 + sqrt(5))/2)/2))/5, 120); # Vaclav Kotesovec, Feb 24 2016
  • Mathematica
    RealDigits[HypergeometricPFQ[{}, {1/5, 2/5, 3/5, 4/5}, 1/3125], 10, 120][[1]]
  • PARI
    suminf(k=0, 1/(5*k)!) \\ Michel Marcus, Feb 21 2016

Formula

Equals Sum_{k>=0} 1/A100734(k).
Equals (exp(1) + exp(-(-1)^(1/5)) + exp((-1)^(2/5)) + exp(-(-1)^(3/5)) + exp((-1)^(4/5)))/5.
Equals (exp(1) + 2*exp(-(sqrt(5) + 1)/4) * cos(sqrt((5 - sqrt(5))/2)/2) + 2*exp((sqrt(5) - 1)/4) * cos(sqrt((5 + sqrt(5))/2)/2))/5. - Vaclav Kotesovec, Feb 24 2016
Sum_{k>=0} (-1)^k / (5*k)! = (exp(-1) + 2*cos(5^(1/4)/(2*sqrt(phi))) * exp(phi/2) + 2*cos(5^(1/4)*sqrt(phi)/2) / exp(1/(2*phi)))/5 = 0.99166694223909419..., where phi = A001622 = (1+sqrt(5))/2 is the golden ratio. - Vaclav Kotesovec, Mar 02 2020

A332892 Decimal expansion of Sum_{k>=0} 1/(6*k)!.

Original entry on oeis.org

1, 0, 0, 1, 3, 8, 8, 8, 9, 0, 9, 7, 6, 5, 6, 4, 7, 4, 3, 8, 6, 7, 7, 7, 0, 0, 8, 4, 4, 0, 9, 7, 3, 7, 4, 0, 9, 2, 7, 8, 6, 5, 6, 1, 7, 3, 5, 5, 5, 7, 8, 1, 1, 4, 2, 0, 0, 6, 7, 9, 3, 1, 7, 0, 3, 1, 8, 8, 5, 3, 1, 1, 5, 4, 2, 0, 9, 6, 3, 8, 9, 7, 8, 4, 4, 0, 8
Offset: 1

Views

Author

Bernard Schott, Mar 02 2020

Keywords

Comments

For q integer >= 1, Sum_{m>=0} 1/(q*m)! = (1/q) * Sum_{k=1..q} exp(X_k) where X_1, X_2, ..., X_q are the q-th roots of unity.

Examples

			1.001388890976564743867770084409737409278656173555781142...
		

References

  • Serge Francinou, Hervé Gianella, Serge Nicolas, Exercices de Mathématiques, Oraux X-ENS, Analyse 2, problème 3.10, p. 182, Cassini, Paris, 2004

Crossrefs

Cf. A001113 (Sum 1/k!), A073743 (Sum 1/(2k)!), A143819 (Sum 1/(3k)!), A332890 (Sum 1/(4k)!), A269296 (Sum 1/(5k)!), this sequence (Sum 1/(6k)!), A346441.

Programs

  • Maple
    evalf(sum(1/(6*n)!,n=0..infinity),150);
  • Mathematica
    RealDigits[(1/3)*(Cosh[1] + 2*Cosh[1/2]*Cos[Sqrt[3]/2]), 10, 120][[1]] (* Amiram Eldar, May 31 2023 *)
  • PARI
    sumpos(k=0, 1/(6*k)!) \\ Michel Marcus, Mar 02 2020

Formula

Equals (1/3) * (cosh(1) + 2*cosh(1/2)*cos((sqrt(3))/2)).
Sum_{k>=0} (-1)^k / (6*k)! = (cos(1) + 2*cos(1/2)*cosh(sqrt(3)/2))/3 = 0.9986111131987866537... - Vaclav Kotesovec, Mar 02 2020
Continued fraction: 1 + 1/(720 - 720/(665281 - 665280/(13366081 - ... - P(n-1)/((P(n) + 1) - ... )))), where P(n) = (6*n)*(6*n - 1)*(6*n - 2)*(6*n - 3)*(6*n - 4)*(6*n - 5) for n >= 1. Cf. A346441. - Peter Bala, Feb 22 2024
Showing 1-10 of 11 results. Next