cp's OEIS Frontend

This is a front-end for the Online Encyclopedia of Integer Sequences, made by Christian Perfect. The idea is to provide OEIS entries in non-ancient HTML, and then to think about how they're presented visually. The source code is on GitHub.

Showing 1-4 of 4 results.

A143819 Decimal expansion of Sum_{k>=0} 1/(3*k)!.

Original entry on oeis.org

1, 1, 6, 8, 0, 5, 8, 3, 1, 3, 3, 7, 5, 9, 1, 8, 5, 2, 5, 5, 1, 6, 2, 5, 6, 9, 2, 9, 6, 1, 1, 1, 4, 4, 7, 4, 7, 7, 1, 6, 9, 3, 3, 2, 9, 5, 1, 1, 3, 2, 9, 2, 5, 1, 6, 3, 8, 5, 8, 9, 1, 2, 3, 2, 6, 8, 5, 1, 1, 3, 4, 4, 6, 4, 7, 3, 2, 0, 5, 5, 7, 1, 7, 9, 0, 8, 7, 2, 4, 8, 0, 5, 8, 5, 5, 1, 9, 1, 8, 9, 6
Offset: 1

Views

Author

Peter Bala, Sep 03 2008

Keywords

Comments

Previous name was: Decimal expansion of the constant 1 + 1/3! + 1/6! + 1/9! + ... = 1.16805 83133 75918 ... .
Define a sequence R(n) of real numbers by R(n) := Sum_{k>=0} (3*k)^n/(3*k)! for n = 0,1,2,... . This constant is R(0); the decimal expansions of R(2) - R(1) = 1/1! + 1/4! + 1/7! and R(1) = 1/2! + 1/5! + 1/8! + ... may be found in A143820 and A143821. It is easy to verify that the sequence R(n) satisfies the recurrence relation u(n+3) = 3*u(n+2) - 2*u(n+1) + Sum_{i=0..n} binomial(n,i) * 3^(n-i)*u(i). Hence R(n) is an integral linear combination of R(0), R(1) and R(2) and so also an integral linear combination of R(0), R(1) and R(2) - R(1). Some examples are given below.
Bowman and Mc Laughlin (Corollary 10 with m = -1) give a continued fraction expansion for this constant and deduce the constant is irrational. - Peter Bala, Apr 17 2017

Examples

			1.168058313375918525516256929611144747716933295113292516385891232685...
R(n) as a linear combination of R(0), R(1) and R(2) - R(1).
=======================================
  R(n)  |     R(0)     R(1)   R(2)-R(1)
=======================================
  R(3)  |       1        1        3
  R(4)  |       6        2        7
  R(5)  |      25       11       16
  R(6)  |      91       66       46
  R(7)  |     322      352      203
  R(8)  |    1232     1730     1178
  R(9)  |    5672     8233     7242
  R(10) |   32202    39987    43786
  ...
The column entries are from A143815, A143816 and A143817.
		

Crossrefs

Cf. A001113 (Sum 1/k!), A073743 (Sum 1/(2k)!), this sequence (Sum 1/(3k)!), A332890 (Sum 1/(4k)!), A269296 (Sum 1/(5k)!), A332892 (Sum 1/(6k)!), A346441.

Programs

  • Mathematica
    RealDigits[ N[ 1/3*(2*Cos[Sqrt[3]/2]/Sqrt[E] + E), 105]][[1]] (* Jean-François Alcover, Nov 08 2012 *)
    With[{nn=120},RealDigits[N[Total[Table[1/(3n)!,{n,nn}]]+1,nn],10,nn][[1]]] (* Harvey P. Dale, Apr 20 2013 *)
  • PARI
    suminf(k=0, 1/(3*k)!) \\ Michel Marcus, Feb 21 2016

Formula

Equals (exp(1) + exp(w) + exp(w^2))/3, where w = exp(2*Pi*i/3).
A143819 + A143820 + A143821 = exp(1).
Equals 1/3 * (e + 2 * cos(sqrt(3)/2) / sqrt(e)). - Bernard Schott, Mar 01 2020
Sum_{k>=0} (-1)^k / (3*k)! = (exp(-1) + 2*exp(1/2)*cos(sqrt(3)/2))/ 3 = 0.83471946857721... - Vaclav Kotesovec, Mar 02 2020
Continued fraction: 1 + 1/(6 - 6/(121 - 120/(505 - ... - P(n-1)/((P(n) + 1) - ... )))), where P(n) = (3*n )*(3*n - 1)*(3*n - 2) for n >= 1. Cf. A346441. - Peter Bala, Feb 22 2024

Extensions

Offset corrected by R. J. Mathar, Feb 05 2009
New name from Bernard Schott, Mar 02 2020

A332890 Decimal expansion of Sum_{k>=0} 1/(4*k)!.

Original entry on oeis.org

1, 0, 4, 1, 6, 9, 1, 4, 7, 0, 3, 4, 1, 6, 9, 1, 7, 4, 7, 9, 3, 9, 4, 2, 1, 1, 1, 4, 1, 0, 0, 0, 1, 9, 1, 4, 3, 1, 6, 6, 9, 1, 9, 7, 6, 6, 4, 9, 1, 8, 9, 2, 9, 6, 6, 2, 0, 3, 7, 4, 9, 7, 3, 5, 0, 4, 5, 9, 3, 4, 7, 2, 8, 9, 1, 1, 8, 4, 7, 7, 3, 1, 7, 4, 1, 1, 0
Offset: 1

Views

Author

Bernard Schott, Mar 01 2020

Keywords

Comments

For q integer >= 1, Sum_{m>=0} 1/(q*m)! = (1/q) * Sum_{k=1..q} exp(X_k) where X_1, X_2, ..., X_q are the q-th roots of unity.

Examples

			1.0416914703416917479394211141000191431669197664918929...
		

References

  • Serge Francinou, Hervé Gianella, Serge Nicolas, Exercices de Mathématiques, Oraux X-ENS, Analyse 2, problème 3.10 p. 182, Cassini, Paris, 2004.

Crossrefs

Cf. A001113 (Sum 1/k!), A073743 (Sum 1/(2k)!), A143819 (Sum 1/(3k)!), this sequence (Sum 1/(4k)!), A269296 (Sum 1/(5k)!), A332892 (Sum 1/(6k)!), A346441.

Programs

  • Maple
    evalf(1/2 * (cos(1) + cosh(1)), 100);
  • Mathematica
    RealDigits[Sum[1/(4n)!,{n,0,\[Infinity]}],10,120][[1]] (* Harvey P. Dale, Apr 18 2023 *)
  • PARI
    suminf(k=0,(1 + (-1)^k)/((2*k)!))/2 \\ Hugo Pfoertner, Mar 01 2020
    
  • PARI
    suminf(k=0, 1/(4*k)!) \\ Michel Marcus, Mar 02 2020

Formula

Equals (1/2) * (cos(1) + cosh(1)).
Equals (1/2) * Sum_{k>=0} (1 + (-1)^k)/((2*k)!). - Peter Luschny, Mar 01 2020
Sum_{k>=0} (-1)^k / (4*k)! = cos(1/sqrt(2)) * cosh(1/sqrt(2)) = 0.958358132833... - Vaclav Kotesovec, Mar 02 2020
Continued fraction: 1 + 1/(24 - 24/(1681 - 1680/(11881 - ... - P(n-1)/((P(n) + 1) - ... )))), where P(n) = (4*n)*(4*n - 1)*(4*n - 2)*(4*n - 3) for n >= 1. Cf. A346441. - Peter Bala, Feb 22 2024

Extensions

More terms from Hugo Pfoertner, Mar 02 2020

A195390 a(n) = (6*n)!.

Original entry on oeis.org

1, 720, 479001600, 6402373705728000, 620448401733239439360000, 265252859812191058636308480000000, 371993326789901217467999448150835200000000, 1405006117752879898543142606244511569936384000000000, 12413915592536072670862289047373375038521486354677760000000000
Offset: 0

Views

Author

Vincenzo Librandi, Sep 24 2011

Keywords

Crossrefs

Programs

  • Magma
    [Factorial(6*n): n in [0..10]];
  • Mathematica
    (6*Range[0,10])! (* Harvey P. Dale, Dec 16 2013 *)

Formula

From Amiram Eldar, Apr 03 2021: (Start)
a(n) = A000142(A008588(n)).
Sum_{n>=0} 1/a(n) = A332892. (End)

A269296 Decimal expansion of Sum_{k>=0} 1/(5k)!.

Original entry on oeis.org

1, 0, 0, 8, 3, 3, 3, 6, 0, 8, 9, 0, 7, 2, 9, 0, 2, 8, 9, 9, 7, 6, 4, 5, 3, 6, 6, 7, 3, 5, 4, 8, 3, 8, 7, 8, 6, 0, 7, 1, 0, 7, 7, 2, 8, 1, 5, 7, 9, 5, 4, 3, 1, 0, 2, 0, 0, 3, 0, 5, 9, 0, 7, 4, 9, 2, 7, 0, 7, 5, 5, 0, 4, 8, 4, 8, 1, 1, 1, 0, 8, 4, 1, 1, 4, 8, 5, 5, 9, 4, 1, 6, 1, 7, 0, 0, 6, 5, 7, 8, 1, 9, 2, 5, 2, 6, 8, 9, 9, 1, 9, 4, 6, 9, 7, 5, 7, 7, 4, 2
Offset: 1

Views

Author

Ilya Gutkovskiy, Feb 21 2016

Keywords

Comments

From Vaclav Kotesovec, Feb 24 2016: (Start)
Sum_{k>=0} 1/k! = A001113 = exp(1).
Sum_{k>=0} 1/(2k)! = A073743 = cosh(1).
Sum_{k>=0} 1/(3k)! = A143819 = (2*cos(sqrt(3)/2)*exp(-1/2) + exp(1))/3.
Sum_{k>=0} 1/(4k)! = (cos(1) + cosh(1))/2 = 1.0416914703416917479394211141...
(End)
For q integer >= 1, Sum_{m>=0} 1/(q*m)! = (1/q) * Sum_{k=1..q} exp(X_k) where X_1, X_2, ..., X_q are the q-th roots of unity. - Bernard Schott, Mar 02 2020
Continued fraction: 1 + 1/(120 - 120/(30241 - 30240/(360361 - ... - P(n-1)/((P(n) + 1) - ... )))), where P(n) = (5*n)*(5*n - 1)*(5*n - 2)*(5*n - 3)*(5*n - 4) for n >= 1. Cf. A346441. - Peter Bala, Feb 22 2024

Examples

			1 + 1/5! + 1/10! + 1/15! + ... = 1.008333608907290289976453667354838786...
		

Crossrefs

Cf. A100734.
Cf. A001113 (Sum 1/k!), A073743 (Sum 1/(2k)!), A143819 (Sum 1/(3k)!), A332890 (Sum 1/(4k)!), this sequence (Sum 1/(5k)!), A332892 (Sum 1/(6k)!), A346441.

Programs

  • Maple
    evalf((exp(1) + 2*exp(-(sqrt(5) + 1)/4) * cos(sqrt((5 - sqrt(5))/2)/2) + 2*exp((sqrt(5) - 1)/4) * cos(sqrt((5 + sqrt(5))/2)/2))/5, 120); # Vaclav Kotesovec, Feb 24 2016
  • Mathematica
    RealDigits[HypergeometricPFQ[{}, {1/5, 2/5, 3/5, 4/5}, 1/3125], 10, 120][[1]]
  • PARI
    suminf(k=0, 1/(5*k)!) \\ Michel Marcus, Feb 21 2016

Formula

Equals Sum_{k>=0} 1/A100734(k).
Equals (exp(1) + exp(-(-1)^(1/5)) + exp((-1)^(2/5)) + exp(-(-1)^(3/5)) + exp((-1)^(4/5)))/5.
Equals (exp(1) + 2*exp(-(sqrt(5) + 1)/4) * cos(sqrt((5 - sqrt(5))/2)/2) + 2*exp((sqrt(5) - 1)/4) * cos(sqrt((5 + sqrt(5))/2)/2))/5. - Vaclav Kotesovec, Feb 24 2016
Sum_{k>=0} (-1)^k / (5*k)! = (exp(-1) + 2*cos(5^(1/4)/(2*sqrt(phi))) * exp(phi/2) + 2*cos(5^(1/4)*sqrt(phi)/2) / exp(1/(2*phi)))/5 = 0.99166694223909419..., where phi = A001622 = (1+sqrt(5))/2 is the golden ratio. - Vaclav Kotesovec, Mar 02 2020
Showing 1-4 of 4 results.