cp's OEIS Frontend

This is a front-end for the Online Encyclopedia of Integer Sequences, made by Christian Perfect. The idea is to provide OEIS entries in non-ancient HTML, and then to think about how they're presented visually. The source code is on GitHub.

Showing 1-9 of 9 results.

A100733 a(n) = (4*n)!.

Original entry on oeis.org

1, 24, 40320, 479001600, 20922789888000, 2432902008176640000, 620448401733239439360000, 304888344611713860501504000000, 263130836933693530167218012160000000, 371993326789901217467999448150835200000000, 815915283247897734345611269596115894272000000000
Offset: 0

Views

Author

Ralf Stephan, Dec 08 2004

Keywords

Comments

From Karol A. Penson, Jun 11 2009: (Start)
Integral representation of a(n) as n-th moment of a positive function W(x) = (1/4)*exp(-x^(1/4))/x^(3/4) on the positive axis:
a(n) = Integral_{x=0..oo} x^n*W(x) dx = Integral_{x=0..oo} x^n*(1/4)*exp(-x^(1/4))/x^(3/4) dx, n >= 0.
This is the solution of the Stieltjes moment problem with the moments a(n), n >= 0.
As the moments a(n) grow very rapidly this suggests, but does not prove, that this solution may not be unique.
This is indeed the case as by construction the following "doubly" infinite family:
V(k,a,x) = (1/4)*exp(-x^(1/4))*(a*sin((3/4)*Pi*k + tan((1/4)*Pi*k)*x^(1/4)) + 1)/x^(3/4),
with the restrictions k=+-1,+-2,..., abs(a) < 1 is still positive on 0 <= x < infinity and has moments a(n).
(End)

Crossrefs

Programs

Formula

E.g.f.: 1/(1-x^4).
From Ilya Gutkovskiy, Jan 20 2017: (Start)
a(n) ~ sqrt(Pi)*2^(8*n+3/2)*n^(4*n+1/2)/exp(4*n).
Sum_{n>=0} 1/a(n) = (cos(1) + cosh(1))/2 = 1.04169147034169174... = A332890. (End)
Sum_{n>=0} (-1)^n/a(n) = cos(1/sqrt(2))*cosh(1/sqrt(2)). - Amiram Eldar, Feb 14 2021

Extensions

More terms from Harvey P. Dale, Oct 03 2014

A143819 Decimal expansion of Sum_{k>=0} 1/(3*k)!.

Original entry on oeis.org

1, 1, 6, 8, 0, 5, 8, 3, 1, 3, 3, 7, 5, 9, 1, 8, 5, 2, 5, 5, 1, 6, 2, 5, 6, 9, 2, 9, 6, 1, 1, 1, 4, 4, 7, 4, 7, 7, 1, 6, 9, 3, 3, 2, 9, 5, 1, 1, 3, 2, 9, 2, 5, 1, 6, 3, 8, 5, 8, 9, 1, 2, 3, 2, 6, 8, 5, 1, 1, 3, 4, 4, 6, 4, 7, 3, 2, 0, 5, 5, 7, 1, 7, 9, 0, 8, 7, 2, 4, 8, 0, 5, 8, 5, 5, 1, 9, 1, 8, 9, 6
Offset: 1

Views

Author

Peter Bala, Sep 03 2008

Keywords

Comments

Previous name was: Decimal expansion of the constant 1 + 1/3! + 1/6! + 1/9! + ... = 1.16805 83133 75918 ... .
Define a sequence R(n) of real numbers by R(n) := Sum_{k>=0} (3*k)^n/(3*k)! for n = 0,1,2,... . This constant is R(0); the decimal expansions of R(2) - R(1) = 1/1! + 1/4! + 1/7! and R(1) = 1/2! + 1/5! + 1/8! + ... may be found in A143820 and A143821. It is easy to verify that the sequence R(n) satisfies the recurrence relation u(n+3) = 3*u(n+2) - 2*u(n+1) + Sum_{i=0..n} binomial(n,i) * 3^(n-i)*u(i). Hence R(n) is an integral linear combination of R(0), R(1) and R(2) and so also an integral linear combination of R(0), R(1) and R(2) - R(1). Some examples are given below.
Bowman and Mc Laughlin (Corollary 10 with m = -1) give a continued fraction expansion for this constant and deduce the constant is irrational. - Peter Bala, Apr 17 2017

Examples

			1.168058313375918525516256929611144747716933295113292516385891232685...
R(n) as a linear combination of R(0), R(1) and R(2) - R(1).
=======================================
  R(n)  |     R(0)     R(1)   R(2)-R(1)
=======================================
  R(3)  |       1        1        3
  R(4)  |       6        2        7
  R(5)  |      25       11       16
  R(6)  |      91       66       46
  R(7)  |     322      352      203
  R(8)  |    1232     1730     1178
  R(9)  |    5672     8233     7242
  R(10) |   32202    39987    43786
  ...
The column entries are from A143815, A143816 and A143817.
		

Crossrefs

Cf. A001113 (Sum 1/k!), A073743 (Sum 1/(2k)!), this sequence (Sum 1/(3k)!), A332890 (Sum 1/(4k)!), A269296 (Sum 1/(5k)!), A332892 (Sum 1/(6k)!), A346441.

Programs

  • Mathematica
    RealDigits[ N[ 1/3*(2*Cos[Sqrt[3]/2]/Sqrt[E] + E), 105]][[1]] (* Jean-François Alcover, Nov 08 2012 *)
    With[{nn=120},RealDigits[N[Total[Table[1/(3n)!,{n,nn}]]+1,nn],10,nn][[1]]] (* Harvey P. Dale, Apr 20 2013 *)
  • PARI
    suminf(k=0, 1/(3*k)!) \\ Michel Marcus, Feb 21 2016

Formula

Equals (exp(1) + exp(w) + exp(w^2))/3, where w = exp(2*Pi*i/3).
A143819 + A143820 + A143821 = exp(1).
Equals 1/3 * (e + 2 * cos(sqrt(3)/2) / sqrt(e)). - Bernard Schott, Mar 01 2020
Sum_{k>=0} (-1)^k / (3*k)! = (exp(-1) + 2*exp(1/2)*cos(sqrt(3)/2))/ 3 = 0.83471946857721... - Vaclav Kotesovec, Mar 02 2020
Continued fraction: 1 + 1/(6 - 6/(121 - 120/(505 - ... - P(n-1)/((P(n) + 1) - ... )))), where P(n) = (3*n )*(3*n - 1)*(3*n - 2) for n >= 1. Cf. A346441. - Peter Bala, Feb 22 2024

Extensions

Offset corrected by R. J. Mathar, Feb 05 2009
New name from Bernard Schott, Mar 02 2020

A337727 a(n) = (4*n)! * Sum_{k=0..n} 1 / (4*k)!.

Original entry on oeis.org

1, 25, 42001, 498971881, 21795091762081, 2534333270094778681, 646315807872650838343345, 317599587988620621961919733001, 274101148417699141578015206369183041, 387502275541069630431671657548241448722521, 849931991080760484603611346800010863970028660561
Offset: 0

Views

Author

Ilya Gutkovskiy, Sep 17 2020

Keywords

Crossrefs

Programs

  • Mathematica
    Table[(4 n)! Sum[1/(4 k)!, {k, 0, n}], {n, 0, 10}]
    Table[(4 n)! SeriesCoefficient[(1/2) (Cos[x] + Cosh[x])/(1 - x^4), {x, 0, 4 n}], {n, 0, 10}]
    Table[Floor[(1/2) (Cos[1] + Cosh[1]) (4 n)!], {n, 0, 10}]
  • PARI
    a(n) = (4*n)!*sum(k=0, n, 1/(4*k)!); \\ Michel Marcus, Sep 17 2020

Formula

E.g.f.: (1/2) * (cos(x) + cosh(x)) / (1 - x^4) = 1 + 25*x^4/4! + 42001*x^8/8! + 498971881*x^12/12! + ...
a(n) = floor(c * (4*n)!), where c = (cos(1) + cosh(1)) / 2 = A332890.

A269296 Decimal expansion of Sum_{k>=0} 1/(5k)!.

Original entry on oeis.org

1, 0, 0, 8, 3, 3, 3, 6, 0, 8, 9, 0, 7, 2, 9, 0, 2, 8, 9, 9, 7, 6, 4, 5, 3, 6, 6, 7, 3, 5, 4, 8, 3, 8, 7, 8, 6, 0, 7, 1, 0, 7, 7, 2, 8, 1, 5, 7, 9, 5, 4, 3, 1, 0, 2, 0, 0, 3, 0, 5, 9, 0, 7, 4, 9, 2, 7, 0, 7, 5, 5, 0, 4, 8, 4, 8, 1, 1, 1, 0, 8, 4, 1, 1, 4, 8, 5, 5, 9, 4, 1, 6, 1, 7, 0, 0, 6, 5, 7, 8, 1, 9, 2, 5, 2, 6, 8, 9, 9, 1, 9, 4, 6, 9, 7, 5, 7, 7, 4, 2
Offset: 1

Views

Author

Ilya Gutkovskiy, Feb 21 2016

Keywords

Comments

From Vaclav Kotesovec, Feb 24 2016: (Start)
Sum_{k>=0} 1/k! = A001113 = exp(1).
Sum_{k>=0} 1/(2k)! = A073743 = cosh(1).
Sum_{k>=0} 1/(3k)! = A143819 = (2*cos(sqrt(3)/2)*exp(-1/2) + exp(1))/3.
Sum_{k>=0} 1/(4k)! = (cos(1) + cosh(1))/2 = 1.0416914703416917479394211141...
(End)
For q integer >= 1, Sum_{m>=0} 1/(q*m)! = (1/q) * Sum_{k=1..q} exp(X_k) where X_1, X_2, ..., X_q are the q-th roots of unity. - Bernard Schott, Mar 02 2020
Continued fraction: 1 + 1/(120 - 120/(30241 - 30240/(360361 - ... - P(n-1)/((P(n) + 1) - ... )))), where P(n) = (5*n)*(5*n - 1)*(5*n - 2)*(5*n - 3)*(5*n - 4) for n >= 1. Cf. A346441. - Peter Bala, Feb 22 2024

Examples

			1 + 1/5! + 1/10! + 1/15! + ... = 1.008333608907290289976453667354838786...
		

Crossrefs

Cf. A100734.
Cf. A001113 (Sum 1/k!), A073743 (Sum 1/(2k)!), A143819 (Sum 1/(3k)!), A332890 (Sum 1/(4k)!), this sequence (Sum 1/(5k)!), A332892 (Sum 1/(6k)!), A346441.

Programs

  • Maple
    evalf((exp(1) + 2*exp(-(sqrt(5) + 1)/4) * cos(sqrt((5 - sqrt(5))/2)/2) + 2*exp((sqrt(5) - 1)/4) * cos(sqrt((5 + sqrt(5))/2)/2))/5, 120); # Vaclav Kotesovec, Feb 24 2016
  • Mathematica
    RealDigits[HypergeometricPFQ[{}, {1/5, 2/5, 3/5, 4/5}, 1/3125], 10, 120][[1]]
  • PARI
    suminf(k=0, 1/(5*k)!) \\ Michel Marcus, Feb 21 2016

Formula

Equals Sum_{k>=0} 1/A100734(k).
Equals (exp(1) + exp(-(-1)^(1/5)) + exp((-1)^(2/5)) + exp(-(-1)^(3/5)) + exp((-1)^(4/5)))/5.
Equals (exp(1) + 2*exp(-(sqrt(5) + 1)/4) * cos(sqrt((5 - sqrt(5))/2)/2) + 2*exp((sqrt(5) - 1)/4) * cos(sqrt((5 + sqrt(5))/2)/2))/5. - Vaclav Kotesovec, Feb 24 2016
Sum_{k>=0} (-1)^k / (5*k)! = (exp(-1) + 2*cos(5^(1/4)/(2*sqrt(phi))) * exp(phi/2) + 2*cos(5^(1/4)*sqrt(phi)/2) / exp(1/(2*phi)))/5 = 0.99166694223909419..., where phi = A001622 = (1+sqrt(5))/2 is the golden ratio. - Vaclav Kotesovec, Mar 02 2020

A332892 Decimal expansion of Sum_{k>=0} 1/(6*k)!.

Original entry on oeis.org

1, 0, 0, 1, 3, 8, 8, 8, 9, 0, 9, 7, 6, 5, 6, 4, 7, 4, 3, 8, 6, 7, 7, 7, 0, 0, 8, 4, 4, 0, 9, 7, 3, 7, 4, 0, 9, 2, 7, 8, 6, 5, 6, 1, 7, 3, 5, 5, 5, 7, 8, 1, 1, 4, 2, 0, 0, 6, 7, 9, 3, 1, 7, 0, 3, 1, 8, 8, 5, 3, 1, 1, 5, 4, 2, 0, 9, 6, 3, 8, 9, 7, 8, 4, 4, 0, 8
Offset: 1

Views

Author

Bernard Schott, Mar 02 2020

Keywords

Comments

For q integer >= 1, Sum_{m>=0} 1/(q*m)! = (1/q) * Sum_{k=1..q} exp(X_k) where X_1, X_2, ..., X_q are the q-th roots of unity.

Examples

			1.001388890976564743867770084409737409278656173555781142...
		

References

  • Serge Francinou, Hervé Gianella, Serge Nicolas, Exercices de Mathématiques, Oraux X-ENS, Analyse 2, problème 3.10, p. 182, Cassini, Paris, 2004

Crossrefs

Cf. A001113 (Sum 1/k!), A073743 (Sum 1/(2k)!), A143819 (Sum 1/(3k)!), A332890 (Sum 1/(4k)!), A269296 (Sum 1/(5k)!), this sequence (Sum 1/(6k)!), A346441.

Programs

  • Maple
    evalf(sum(1/(6*n)!,n=0..infinity),150);
  • Mathematica
    RealDigits[(1/3)*(Cosh[1] + 2*Cosh[1/2]*Cos[Sqrt[3]/2]), 10, 120][[1]] (* Amiram Eldar, May 31 2023 *)
  • PARI
    sumpos(k=0, 1/(6*k)!) \\ Michel Marcus, Mar 02 2020

Formula

Equals (1/3) * (cosh(1) + 2*cosh(1/2)*cos((sqrt(3))/2)).
Sum_{k>=0} (-1)^k / (6*k)! = (cos(1) + 2*cos(1/2)*cosh(sqrt(3)/2))/3 = 0.9986111131987866537... - Vaclav Kotesovec, Mar 02 2020
Continued fraction: 1 + 1/(720 - 720/(665281 - 665280/(13366081 - ... - P(n-1)/((P(n) + 1) - ... )))), where P(n) = (6*n)*(6*n - 1)*(6*n - 2)*(6*n - 3)*(6*n - 4)*(6*n - 5) for n >= 1. Cf. A346441. - Peter Bala, Feb 22 2024

A334363 Decimal expansion of Sum_{k>=0} 1/(4*k+1)!.

Original entry on oeis.org

1, 0, 0, 8, 3, 3, 6, 0, 8, 9, 2, 2, 5, 8, 4, 8, 9, 8, 1, 7, 6, 7, 4, 4, 2, 0, 8, 6, 1, 1, 2, 9, 4, 9, 9, 0, 7, 3, 8, 9, 1, 4, 0, 5, 2, 1, 0, 6, 6, 2, 3, 3, 4, 6, 7, 9, 5, 1, 1, 5, 8, 5, 6, 1, 5, 0, 2, 6, 0, 8, 9, 8, 5, 8, 4, 7, 7, 8, 1, 7, 8, 2, 2, 7, 7, 8, 7, 8, 5, 9, 7, 8, 1, 6, 3, 3, 8, 0, 4, 3, 8, 4, 7, 3, 8, 4, 2, 8, 5, 6
Offset: 1

Views

Author

Ilya Gutkovskiy, Apr 24 2020

Keywords

Examples

			1/1! + 1/5! + 1/9! + ... = 1.008336089225848981767442...
		

Crossrefs

Programs

  • Mathematica
    RealDigits[(Sin[1] + Sinh[1])/2, 10, 110] [[1]]
  • PARI
    suminf(k=0, 1/(4*k+1)!) \\ Michel Marcus, Apr 25 2020

Formula

Equals (sin(1) + sinh(1))/2.

A334364 Decimal expansion of Sum_{k>=0} 1/(4*k+2)!.

Original entry on oeis.org

5, 0, 1, 3, 8, 9, 1, 6, 4, 4, 7, 3, 5, 5, 2, 0, 3, 0, 5, 3, 8, 4, 8, 4, 5, 0, 6, 6, 5, 7, 0, 4, 2, 5, 3, 9, 4, 3, 4, 6, 0, 9, 3, 4, 5, 8, 7, 3, 9, 7, 0, 7, 3, 8, 5, 3, 3, 6, 5, 2, 4, 7, 9, 6, 6, 4, 8, 3, 4, 3, 3, 4, 1, 3, 7, 3, 7, 5, 9, 6, 7, 2, 2, 3, 1, 5, 6, 4, 3, 5, 1, 7, 4, 1, 7, 9, 9, 7, 3, 1, 2, 1, 7, 3, 7, 5, 6, 3, 7, 2
Offset: 0

Views

Author

Ilya Gutkovskiy, Apr 24 2020

Keywords

Examples

			1/2! + 1/6! + 1/10! + ... = 0.5013891644735520305...
		

Crossrefs

Programs

  • Mathematica
    RealDigits[(Cosh[1] - Cos[1])/2, 10, 110] [[1]]
  • PARI
    suminf(k=0, 1/(4*k+2)!) \\ Michel Marcus, Apr 25 2020

Formula

Equals (cosh(1) - cos(1))/2.

A334365 Decimal expansion of Sum_{k>=0} 1/(4*k+3)!.

Original entry on oeis.org

1, 6, 6, 8, 6, 5, 1, 0, 4, 4, 1, 7, 9, 5, 2, 4, 7, 5, 1, 1, 4, 9, 3, 9, 7, 6, 4, 4, 8, 2, 6, 5, 0, 9, 0, 7, 7, 6, 6, 5, 7, 7, 4, 6, 0, 2, 6, 7, 8, 6, 2, 4, 0, 2, 2, 7, 8, 4, 0, 6, 8, 5, 1, 5, 1, 0, 6, 9, 8, 5, 8, 1, 4, 5, 6, 5, 4, 2, 1, 1, 3, 3, 2, 9, 2, 3, 8, 8, 5, 4, 2, 7, 3, 2, 8, 5, 3, 4, 7, 9, 9, 3, 0, 3, 5, 2, 4, 7, 7, 0, 9
Offset: 0

Views

Author

Ilya Gutkovskiy, Apr 24 2020

Keywords

Examples

			1/3! + 1/7! + 1/11! + ... = 0.1668651044179524751...
		

Crossrefs

Programs

  • Mathematica
    RealDigits[(Sinh[1] - Sin[1])/2, 10, 111] [[1]]
  • PARI
    suminf(k=0, 1/(4*k+3)!) \\ Michel Marcus, Apr 25 2020

Formula

Equals (sinh(1) - sin(1))/2.

A352660 a(n) = n! * Sum_{k=0..floor(n/4)} 1 / (4*k)!.

Original entry on oeis.org

1, 1, 2, 6, 25, 125, 750, 5250, 42001, 378009, 3780090, 41580990, 498971881, 6486634453, 90812882342, 1362193235130, 21795091762081, 370516559955377, 6669298079196786, 126716663504738934, 2534333270094778681, 53220998671990352301, 1170861970783787750622
Offset: 0

Views

Author

Ilya Gutkovskiy, Mar 25 2022

Keywords

Crossrefs

Programs

  • Mathematica
    Table[n! Sum[1/(4 k)!, {k, 0, Floor[n/4]}], {n, 0, 22}]
    nmax = 22; CoefficientList[Series[(Cos[x] + Cosh[x])/(2 (1 - x)), {x, 0, nmax}], x] Range[0, nmax]!
  • PARI
    a(n) = n! * sum(k=0, n\4, 1/(4*k)!); \\ Michel Marcus, Mar 29 2022

Formula

E.g.f.: (cos(x) + cosh(x)) / (2*(1 - x)).
a(n) = floor(c * n!), where c = 1.04169147... = A332890.
Showing 1-9 of 9 results.