cp's OEIS Frontend

This is a front-end for the Online Encyclopedia of Integer Sequences, made by Christian Perfect. The idea is to provide OEIS entries in non-ancient HTML, and then to think about how they're presented visually. The source code is on GitHub.

Showing 1-10 of 16 results. Next

A068985 Decimal expansion of 1/e.

Original entry on oeis.org

3, 6, 7, 8, 7, 9, 4, 4, 1, 1, 7, 1, 4, 4, 2, 3, 2, 1, 5, 9, 5, 5, 2, 3, 7, 7, 0, 1, 6, 1, 4, 6, 0, 8, 6, 7, 4, 4, 5, 8, 1, 1, 1, 3, 1, 0, 3, 1, 7, 6, 7, 8, 3, 4, 5, 0, 7, 8, 3, 6, 8, 0, 1, 6, 9, 7, 4, 6, 1, 4, 9, 5, 7, 4, 4, 8, 9, 9, 8, 0, 3, 3, 5, 7, 1, 4, 7, 2, 7, 4, 3, 4, 5, 9, 1, 9, 6, 4, 3, 7, 4, 6, 6, 2, 7
Offset: 0

Views

Author

N. J. A. Sloane, Apr 08 2002

Keywords

Comments

From the "derangements" problem: this is the probability that if a large number of people are given their hats at random, nobody gets their own hat.
Also, decimal expansion of cosh(1)-sinh(1). - Mohammad K. Azarian, Aug 15 2006
Also, this is lim_{n->inf} P(n), where P(n) is the probability that a random rooted forest on [n] is a tree. See linked file. - Washington Bomfim, Nov 01 2010
Also, location of the minimum of x^x. - Stanislav Sykora, May 18 2012
Also, -1/e is the global minimum of x*log(x) at x = 1/e and the global minimum of x*e^x at x = -1. - Rick L. Shepherd, Jan 11 2014
Also, the asymptotic probability of success in the secretary problem (also known as the sultan's dowry problem). - Andrey Zabolotskiy, Sep 14 2019
The asymptotic density of numbers with an odd number of trailing zeros in their factorial base representation (A232745). - Amiram Eldar, Feb 26 2021
For large range size s where numbers are chosen randomly r times, the probability when r = s that a number is randomly chosen exactly 1 time. Also the chance that a number was not chosen at all. The general case for the probability of being chosen n times is (r/s)^n / (n! * e^(r/s)). - Mark Andreas, Oct 25 2022

Examples

			1/e = 0.3678794411714423215955237701614608674458111310317678... = A135005/5.
		

References

  • Steven R. Finch, Mathematical Constants, Encyclopedia of Mathematics and its Applications, vol. 94, Cambridge University Press, Sections 1.3 and 5,23,3, pp. 14, 409.
  • Anders Hald, A History of Probability and Statistics and Their Applications Before 1750, Wiley, NY, 1990 (Chapter 19).
  • John Harris, Jeffry L. Hirst, and Michael Mossinghoff, Combinatorics and Graph Theory, Springer Science & Business Media, 2009, p. 161.
  • L. B. W. Jolley, Summation of Series, Dover, 1961, eq. (103) on page 20.
  • Traian Lalescu, Problem 579, Gazeta Matematică, Vol. 6 (1900-1901), p. 148.
  • John Riordan, An Introduction to Combinatorial Analysis, Wiley, 1958, p. 65.
  • Manfred R. Schroeder, Number Theory in Science and Communication, Springer Science & Business Media, 2008, ch. 9.5 Derangements.
  • Jerome Spanier and Keith B. Oldham, "Atlas of Functions", Hemisphere Publishing Corp., 1987, chapter 26, page 233.
  • Walter D. Wallis and John C. George, Introduction to Combinatorics, CRC Press, 2nd ed. 2016, theorem 5.2 (The Derangement Series).
  • David Wells, The Penguin Dictionary of Curious and Interesting Numbers. Penguin Books, NY, 1986, Revised edition 1987, p. 27.

Crossrefs

Cf. A059193.
Cf. asymptotic probabilities of success for other "nothing but the best" variants of the secretary problem: A325905, A242674, A246665.

Programs

Formula

Equals 2*(1/3! + 2/5! + 3/7! + ...). [Jolley]
Equals 1 - Sum_{i >= 1} (-1)^(i - 1)/i!. [Michon]
Equals lim_{x->infinity} (1 - 1/x)^x. - Arkadiusz Wesolowski, Feb 17 2012
Equals j_1(i)/i = cos(i) + i*sin(i), where j_1(z) is the spherical Bessel function of the first kind and i = sqrt(-1). - Stanislav Sykora, Jan 11 2017
Equals Sum_{i>=0} ((-1)^i)/i!. - Maciej Kaniewski, Sep 10 2017
Equals Sum_{i>=0} ((-1)^i)(i^2+1)/i!. - Maciej Kaniewski, Sep 12 2017
From Peter Bala, Oct 23 2019: (Start)
The series representation 1/e = Sum_{k >= 0} (-1)^k/k! is the case n = 0 of the following series acceleration formulas:
1/e = n!*Sum_{k >= 0} (-1)^k/(k!*R(n,k)*R(n,k+1)), n = 0,1,2,..., where R(n,x) = Sum_{k = 0..n} (-1)^k*binomial(n,k)*k!*binomial(-x,k) are the row polynomials of A094816. (End)
1/e = 1 - Sum_{n >= 0} n!/(A(n)*A(n+1)), where A(n) = A000522(n). - Peter Bala, Nov 13 2019
Equals Integral_{x=0..1} x * sinh(x) dx. - Amiram Eldar, Aug 14 2020
Equals lim_{x->oo} (x!)^(1/x)/x. - L. Joris Perrenet, Dec 08 2020
Equals lim_{n->oo} (n+1)!^(1/(n+1)) - n!^(1/n) (Lalescu, 1900-1901). - Amiram Eldar, Mar 29 2022

Extensions

More terms from Rick L. Shepherd, Jan 11 2014

A049470 Decimal expansion of cos(1).

Original entry on oeis.org

5, 4, 0, 3, 0, 2, 3, 0, 5, 8, 6, 8, 1, 3, 9, 7, 1, 7, 4, 0, 0, 9, 3, 6, 6, 0, 7, 4, 4, 2, 9, 7, 6, 6, 0, 3, 7, 3, 2, 3, 1, 0, 4, 2, 0, 6, 1, 7, 9, 2, 2, 2, 2, 7, 6, 7, 0, 0, 9, 7, 2, 5, 5, 3, 8, 1, 1, 0, 0, 3, 9, 4, 7, 7, 4, 4, 7, 1, 7, 6, 4, 5, 1, 7, 9, 5, 1, 8, 5, 6, 0, 8, 7, 1, 8, 3, 0, 8, 9
Offset: 0

Views

Author

Albert du Toit (dutwa(AT)intekom.co.za), N. J. A. Sloane

Keywords

Comments

Also, decimal expansion of the real part of e^i. - Bruno Berselli, Feb 08 2013
By the Lindemann-Weierstrass theorem, this constant is transcendental. - Charles R Greathouse IV, May 13 2019

Examples

			0.5403023058681397...
		

Crossrefs

Cf. A049469 (imaginary part of e^i), A211883 (real part of -(i^e)), A211884 (imaginary part of -(i^e)). - Bruno Berselli, Feb 08 2013
Cf. A073743 ( cosh(1) ), A073448, A275651.

Programs

Formula

Continued fraction representation: cos(1) = 1/(1 + 1/(1 + 2/(11 + 12/(29 + ... + (2*n - 2)*(2*n - 3)/((4*n^2 - 2*n - 1) + ... ))))). See A275651 for proof. Cf. A073743. - Peter Bala, Sep 02 2016
Equals Sum_{k >= 0} (-1)^k/A010050(k), where A010050(k) = (2k)! [See Gradshteyn and Ryzhik]. - A.H.M. Smeets, Sep 22 2018
Equals 1/A073448. - Alois P. Heinz, Jan 23 2023
From Gerry Martens, May 04 2024: (Start)
Equals (4*(cos(1/4)^4 + sin(1/4)^4) - 3).
Equals (16*(cos(1/4)^6 + sin(1/4)^6) - 10)/6. (End)

A143819 Decimal expansion of Sum_{k>=0} 1/(3*k)!.

Original entry on oeis.org

1, 1, 6, 8, 0, 5, 8, 3, 1, 3, 3, 7, 5, 9, 1, 8, 5, 2, 5, 5, 1, 6, 2, 5, 6, 9, 2, 9, 6, 1, 1, 1, 4, 4, 7, 4, 7, 7, 1, 6, 9, 3, 3, 2, 9, 5, 1, 1, 3, 2, 9, 2, 5, 1, 6, 3, 8, 5, 8, 9, 1, 2, 3, 2, 6, 8, 5, 1, 1, 3, 4, 4, 6, 4, 7, 3, 2, 0, 5, 5, 7, 1, 7, 9, 0, 8, 7, 2, 4, 8, 0, 5, 8, 5, 5, 1, 9, 1, 8, 9, 6
Offset: 1

Views

Author

Peter Bala, Sep 03 2008

Keywords

Comments

Previous name was: Decimal expansion of the constant 1 + 1/3! + 1/6! + 1/9! + ... = 1.16805 83133 75918 ... .
Define a sequence R(n) of real numbers by R(n) := Sum_{k>=0} (3*k)^n/(3*k)! for n = 0,1,2,... . This constant is R(0); the decimal expansions of R(2) - R(1) = 1/1! + 1/4! + 1/7! and R(1) = 1/2! + 1/5! + 1/8! + ... may be found in A143820 and A143821. It is easy to verify that the sequence R(n) satisfies the recurrence relation u(n+3) = 3*u(n+2) - 2*u(n+1) + Sum_{i=0..n} binomial(n,i) * 3^(n-i)*u(i). Hence R(n) is an integral linear combination of R(0), R(1) and R(2) and so also an integral linear combination of R(0), R(1) and R(2) - R(1). Some examples are given below.
Bowman and Mc Laughlin (Corollary 10 with m = -1) give a continued fraction expansion for this constant and deduce the constant is irrational. - Peter Bala, Apr 17 2017

Examples

			1.168058313375918525516256929611144747716933295113292516385891232685...
R(n) as a linear combination of R(0), R(1) and R(2) - R(1).
=======================================
  R(n)  |     R(0)     R(1)   R(2)-R(1)
=======================================
  R(3)  |       1        1        3
  R(4)  |       6        2        7
  R(5)  |      25       11       16
  R(6)  |      91       66       46
  R(7)  |     322      352      203
  R(8)  |    1232     1730     1178
  R(9)  |    5672     8233     7242
  R(10) |   32202    39987    43786
  ...
The column entries are from A143815, A143816 and A143817.
		

Crossrefs

Cf. A001113 (Sum 1/k!), A073743 (Sum 1/(2k)!), this sequence (Sum 1/(3k)!), A332890 (Sum 1/(4k)!), A269296 (Sum 1/(5k)!), A332892 (Sum 1/(6k)!), A346441.

Programs

  • Mathematica
    RealDigits[ N[ 1/3*(2*Cos[Sqrt[3]/2]/Sqrt[E] + E), 105]][[1]] (* Jean-François Alcover, Nov 08 2012 *)
    With[{nn=120},RealDigits[N[Total[Table[1/(3n)!,{n,nn}]]+1,nn],10,nn][[1]]] (* Harvey P. Dale, Apr 20 2013 *)
  • PARI
    suminf(k=0, 1/(3*k)!) \\ Michel Marcus, Feb 21 2016

Formula

Equals (exp(1) + exp(w) + exp(w^2))/3, where w = exp(2*Pi*i/3).
A143819 + A143820 + A143821 = exp(1).
Equals 1/3 * (e + 2 * cos(sqrt(3)/2) / sqrt(e)). - Bernard Schott, Mar 01 2020
Sum_{k>=0} (-1)^k / (3*k)! = (exp(-1) + 2*exp(1/2)*cos(sqrt(3)/2))/ 3 = 0.83471946857721... - Vaclav Kotesovec, Mar 02 2020
Continued fraction: 1 + 1/(6 - 6/(121 - 120/(505 - ... - P(n-1)/((P(n) + 1) - ... )))), where P(n) = (3*n )*(3*n - 1)*(3*n - 2) for n >= 1. Cf. A346441. - Peter Bala, Feb 22 2024

Extensions

Offset corrected by R. J. Mathar, Feb 05 2009
New name from Bernard Schott, Mar 02 2020

A143820 Decimal expansion of the constant 1/1! + 1/4! + 1/7! + ...

Original entry on oeis.org

1, 0, 4, 1, 8, 6, 5, 3, 5, 5, 0, 9, 8, 9, 0, 9, 8, 4, 6, 3, 0, 1, 3, 3, 6, 6, 1, 5, 0, 2, 1, 5, 2, 7, 3, 8, 7, 6, 9, 7, 0, 8, 3, 5, 7, 1, 7, 2, 4, 1, 6, 3, 4, 5, 9, 5, 4, 5, 7, 3, 9, 2, 5, 5, 4, 2, 3, 5, 5, 1, 7, 4, 1, 1, 6, 1, 0, 7, 4, 0, 2, 9, 5, 9, 2, 8, 6, 2, 6, 7, 3, 9, 3, 0, 1, 0, 0, 6, 5, 5, 2
Offset: 1

Views

Author

Peter Bala, Sep 03 2008

Keywords

Comments

Define a sequence R(n) of real numbers by R(n) := Sum_{k >= 0} (3*k)^n/(3*k)! for n = 0,1,2,... . This constant is R(2) - R(1); the decimal expansions of R(0) = 1 + 1/3! + 1/6! + ... and R(1) = 1/2! + 1/5! + 1/8! + ... may be found in A143819 and A143821. It is easy to verify that the sequence R(n) satisfies the recurrence relation u(n+3) = 3*u(n+2) - 2*u(n+1) + Sum_{i = 0..n} binomial(n,i) * 3^(n-i)*u(i). Hence R(n) is an integral linear combination of R(0), R(1) and R(2) and so also an integral linear combination of R(0), R(1) and R(2) - R(1).
R(n) as a linear combination of R(0), R(1) and R(2) - R(1).
========================================
| linear combination of
R(n) | R(0) R(1) R(2) - R(1)
========================================
R(3) | 1 1 3
R(4) | 6 2 7
R(5) | 25 11 16
R(6) | 91 66 46
R(7) | 322 352 203
R(8) | 1232 1730 1178
R(9) | 5672 8233 7242
R(10) | 32202 39987 43786
...
The column entries are from A143815, A143816 and A143817.
The Abraham Ungar 1982 article defines H_{n,r}(z) = Sum_{k>=0} z^(nk+r)/(nk+r)! as equation (1). The constant is H_{3,1}(1). In equation (13) H_{3,1}(x) = (exp(x) + 2 * exp(-x/2) * cos(sqrt(3)/2*x - 2*Pi/3))/3. In equation (12) the expression H_{3,1}(x) = (e^x + q_2 e^{q_1 x} + q_1 e^{q_2 x})/3 where q_1 = (-1 + I sqrt(3))/2 and q_2 = (-1 - I sqrt(3))/2 is given for H_{3,2}(x) instead. - Michael Somos, Nov 01 2024

Examples

			1.041865355098909...
		

Crossrefs

Programs

  • Maple
    Digits:=101: evalf(sum(1/(3*n+1)!, n=0..infinity)); # Michal Paulovic, Aug 20 2023
  • Mathematica
    RealDigits[ N[ (-Cos[Sqrt[3]/2] + E^(3/2) + Sqrt[3]*Sin[Sqrt[3]/2])/(3*Sqrt[E]), 105]][[1]] (* Jean-François Alcover, Nov 08 2012 *)
  • PARI
    suminf(n=0,1/(3*n+1)!) \\ Michel Marcus, Aug 20 2023

Formula

Equals (exp(1) + w^2*exp(w) + w*exp(w^2))/3, where w = exp(2*Pi*i/3).
A143819 + A143820 + A143821 = exp(1).
Equals Sum_{n>=0} 1/(3*n+1)!. - Michal Paulovic, Aug 20 2023
Continued fraction: 1 + 1/(24 - 24/(211 - 210/(721 - ... - P(n-1)/((P(n) + 1) - ... )))), where P(n) = (3*n - 1)*(3*n)*(3*n + 1) for n >= 1. Cf. A346441. - Peter Bala, Feb 22 2024
Equals (exp(1) + 2*exp(-1/2)*cos(sqrt(3)/2-2*Pi/3))/3. [Ungar, p.690] - Michael Somos, Nov 01 2024

Extensions

Offset corrected by R. J. Mathar, Feb 05 2009

A196498 Decimal expansion of the constant Sum_{k>=0} (-1)^k/(10*k)!.

Original entry on oeis.org

9, 9, 9, 9, 9, 9, 7, 2, 4, 4, 2, 6, 8, 0, 7, 7, 6, 0, 5, 5, 2, 1, 2, 5, 2, 3, 6, 7, 5, 8, 0, 2, 0, 4, 7, 6, 0, 0, 1, 2, 6, 3, 7, 2, 0, 3, 6, 6, 0, 0, 3, 5, 6, 2, 1, 1, 9, 7, 3, 3, 1, 6, 3, 7, 2, 8, 9, 9, 3, 3, 6, 5, 8, 4, 7, 2, 1, 1, 6, 8, 9, 6, 7, 4, 0, 0, 2, 7, 4, 8, 2, 1, 1, 9, 7, 3, 8, 4, 2, 5, 9, 3, 0, 1, 0
Offset: 0

Views

Author

R. J. Mathar, Oct 03 2011

Keywords

Examples

			0.99999972442680776055212523675802047...
		

Crossrefs

Programs

  • Mathematica
    RealDigits[ HypergeometricPFQ[{}, {1/10, 1/5, 3/10, 2/5, 1/2, 3/5, 7/10, 4/5, 9/10}, -10^-10], 10, 105] // First (* Jean-François Alcover, Feb 12 2013 *)
  • PARI
    sumalt(k=0, (-1)^k/(10*k)!) \\ Michel Marcus, Jul 18 2021

Extensions

6 more digits from Jean-François Alcover, Feb 12 2013

A346437 Decimal expansion of the constant Sum_{k>=0} (-1)^k/(7*k)!.

Original entry on oeis.org

9, 9, 9, 8, 0, 1, 5, 8, 7, 3, 1, 3, 0, 5, 8, 0, 4, 7, 1, 6, 5, 4, 5, 8, 3, 7, 0, 9, 5, 5, 3, 2, 7, 6, 2, 7, 5, 7, 2, 1, 0, 9, 1, 8, 0, 5, 7, 4, 8, 8, 0, 9, 5, 6, 1, 4, 9, 7, 1, 2, 9, 4, 1, 3, 9, 4, 0, 9, 3, 6, 7, 6, 4, 4, 6, 9, 8, 5, 8, 1, 1, 0, 5, 7, 8, 7, 7
Offset: 0

Views

Author

Sean A. Irvine, Jul 17 2021

Keywords

Examples

			0.99980158731305804716545837...
		

Crossrefs

Programs

  • Mathematica
    RealDigits[HypergeometricPFQ[{}, {1/7, 2/7, 3/7, 4/7, 5/7, 6/7}, -1/7^7], 10, 120][[1]] (* Amiram Eldar, Jun 04 2023 *)
  • PARI
    sumalt(k=0, (-1)^k/(7*k)!) \\ Michel Marcus, Jul 18 2021

A346440 Decimal expansion of the constant Sum_{k>=0} (-1)^k/(4*k)!.

Original entry on oeis.org

9, 5, 8, 3, 5, 8, 1, 3, 2, 8, 3, 3, 0, 0, 7, 0, 1, 6, 2, 1, 0, 4, 0, 4, 4, 6, 0, 2, 5, 5, 6, 7, 4, 9, 9, 5, 4, 2, 3, 5, 5, 6, 7, 9, 4, 7, 0, 1, 8, 1, 0, 1, 6, 9, 5, 6, 1, 6, 2, 3, 1, 9, 0, 0, 2, 1, 2, 2, 3, 2, 0, 4, 2, 8, 0, 7, 9, 0, 1, 3, 3, 2, 1, 3, 2, 6, 8
Offset: 0

Views

Author

Sean A. Irvine, Jul 17 2021

Keywords

Examples

			0.95835813283300701621040446...
		

Crossrefs

Programs

  • Mathematica
    RealDigits[Sum[(-1)^k/(4*k)!, {k, 0, Infinity}], 10, 100][[1]] (* Amiram Eldar, Jul 18 2021 *)
  • PARI
    sumalt(k=0, (-1)^k/(4*k)!) \\ Michel Marcus, Jul 18 2021

Formula

Equals cos(sqrt(2)/2)*cosh(sqrt(2)/2). - Amiram Eldar, Jul 18 2021
Continued fraction: 1/(1 + 1/(23 + 24/(1679 + ... + P(n-1)/((P(n) - 1) + ... )))), where P(n) = (4*n)*(4*n - 1)*(4*n - 2)*(4*n - 3) for n >= 1. Cf. A346441. - Peter Bala, Feb 21 2024

A332890 Decimal expansion of Sum_{k>=0} 1/(4*k)!.

Original entry on oeis.org

1, 0, 4, 1, 6, 9, 1, 4, 7, 0, 3, 4, 1, 6, 9, 1, 7, 4, 7, 9, 3, 9, 4, 2, 1, 1, 1, 4, 1, 0, 0, 0, 1, 9, 1, 4, 3, 1, 6, 6, 9, 1, 9, 7, 6, 6, 4, 9, 1, 8, 9, 2, 9, 6, 6, 2, 0, 3, 7, 4, 9, 7, 3, 5, 0, 4, 5, 9, 3, 4, 7, 2, 8, 9, 1, 1, 8, 4, 7, 7, 3, 1, 7, 4, 1, 1, 0
Offset: 1

Views

Author

Bernard Schott, Mar 01 2020

Keywords

Comments

For q integer >= 1, Sum_{m>=0} 1/(q*m)! = (1/q) * Sum_{k=1..q} exp(X_k) where X_1, X_2, ..., X_q are the q-th roots of unity.

Examples

			1.0416914703416917479394211141000191431669197664918929...
		

References

  • Serge Francinou, Hervé Gianella, Serge Nicolas, Exercices de Mathématiques, Oraux X-ENS, Analyse 2, problème 3.10 p. 182, Cassini, Paris, 2004.

Crossrefs

Cf. A001113 (Sum 1/k!), A073743 (Sum 1/(2k)!), A143819 (Sum 1/(3k)!), this sequence (Sum 1/(4k)!), A269296 (Sum 1/(5k)!), A332892 (Sum 1/(6k)!), A346441.

Programs

  • Maple
    evalf(1/2 * (cos(1) + cosh(1)), 100);
  • Mathematica
    RealDigits[Sum[1/(4n)!,{n,0,\[Infinity]}],10,120][[1]] (* Harvey P. Dale, Apr 18 2023 *)
  • PARI
    suminf(k=0,(1 + (-1)^k)/((2*k)!))/2 \\ Hugo Pfoertner, Mar 01 2020
    
  • PARI
    suminf(k=0, 1/(4*k)!) \\ Michel Marcus, Mar 02 2020

Formula

Equals (1/2) * (cos(1) + cosh(1)).
Equals (1/2) * Sum_{k>=0} (1 + (-1)^k)/((2*k)!). - Peter Luschny, Mar 01 2020
Sum_{k>=0} (-1)^k / (4*k)! = cos(1/sqrt(2)) * cosh(1/sqrt(2)) = 0.958358132833... - Vaclav Kotesovec, Mar 02 2020
Continued fraction: 1 + 1/(24 - 24/(1681 - 1680/(11881 - ... - P(n-1)/((P(n) + 1) - ... )))), where P(n) = (4*n)*(4*n - 1)*(4*n - 2)*(4*n - 3) for n >= 1. Cf. A346441. - Peter Bala, Feb 22 2024

Extensions

More terms from Hugo Pfoertner, Mar 02 2020

A346435 Decimal expansion of the constant Sum_{k>=0} (-1)^k/(9*k)!.

Original entry on oeis.org

9, 9, 9, 9, 9, 7, 2, 4, 4, 2, 6, 8, 0, 7, 7, 7, 5, 7, 6, 0, 3, 0, 0, 4, 4, 3, 0, 0, 3, 8, 5, 0, 5, 3, 2, 4, 9, 3, 6, 6, 2, 5, 4, 7, 1, 5, 7, 7, 4, 2, 0, 9, 5, 4, 8, 6, 8, 2, 6, 3, 4, 9, 5, 7, 5, 4, 1, 0, 7, 8, 5, 1, 3, 8, 8, 1, 5, 1, 0, 4, 5, 8, 8, 0, 7, 7, 3
Offset: 0

Views

Author

Sean A. Irvine, Jul 17 2021

Keywords

Examples

			0.99999724426807775760300443003850532493662547157742...
		

Crossrefs

Programs

  • Mathematica
    RealDigits[HypergeometricPFQ[{}, {1/9, 2/9, 1/3, 4/9, 5/9, 2/3, 7/9, 8/9}, -1/3^18], 10, 120][[1]] (* Amiram Eldar, Jun 04 2023 *)
  • PARI
    sumalt(k=0, (-1)^k/(9*k)!) \\ Michel Marcus, Jul 18 2021

A346436 Decimal expansion of the constant Sum_{k>=0} (-1)^k/(8*k)!.

Original entry on oeis.org

9, 9, 9, 9, 7, 5, 1, 9, 8, 4, 1, 2, 7, 4, 6, 2, 0, 7, 4, 7, 1, 7, 3, 4, 9, 6, 0, 5, 2, 8, 1, 0, 1, 7, 0, 2, 4, 5, 5, 3, 6, 5, 5, 7, 9, 9, 9, 3, 1, 8, 7, 5, 5, 6, 0, 5, 7, 6, 5, 2, 4, 3, 8, 2, 0, 7, 9, 2, 3, 4, 9, 7, 5, 6, 4, 5, 0, 4, 8, 1, 1, 7, 6, 6, 1, 7, 2
Offset: 0

Views

Author

Sean A. Irvine, Jul 17 2021

Keywords

Examples

			0.9999751984127462074717349605281...
		

Crossrefs

Programs

  • Mathematica
    RealDigits[HypergeometricPFQ[{}, {1/8, 1/4, 3/8, 1/2, 5/8, 3/4, 7/8}, -1/2^24], 10, 120][[1]] (* Amiram Eldar, Jun 04 2023 *)
  • PARI
    sumalt(k=0, (-1)^k/(8*k)!) \\ Michel Marcus, Jul 18 2021
Showing 1-10 of 16 results. Next