cp's OEIS Frontend

This is a front-end for the Online Encyclopedia of Integer Sequences, made by Christian Perfect. The idea is to provide OEIS entries in non-ancient HTML, and then to think about how they're presented visually. The source code is on GitHub.

Showing 1-10 of 63 results. Next

A068985 Decimal expansion of 1/e.

Original entry on oeis.org

3, 6, 7, 8, 7, 9, 4, 4, 1, 1, 7, 1, 4, 4, 2, 3, 2, 1, 5, 9, 5, 5, 2, 3, 7, 7, 0, 1, 6, 1, 4, 6, 0, 8, 6, 7, 4, 4, 5, 8, 1, 1, 1, 3, 1, 0, 3, 1, 7, 6, 7, 8, 3, 4, 5, 0, 7, 8, 3, 6, 8, 0, 1, 6, 9, 7, 4, 6, 1, 4, 9, 5, 7, 4, 4, 8, 9, 9, 8, 0, 3, 3, 5, 7, 1, 4, 7, 2, 7, 4, 3, 4, 5, 9, 1, 9, 6, 4, 3, 7, 4, 6, 6, 2, 7
Offset: 0

Views

Author

N. J. A. Sloane, Apr 08 2002

Keywords

Comments

From the "derangements" problem: this is the probability that if a large number of people are given their hats at random, nobody gets their own hat.
Also, decimal expansion of cosh(1)-sinh(1). - Mohammad K. Azarian, Aug 15 2006
Also, this is lim_{n->inf} P(n), where P(n) is the probability that a random rooted forest on [n] is a tree. See linked file. - Washington Bomfim, Nov 01 2010
Also, location of the minimum of x^x. - Stanislav Sykora, May 18 2012
Also, -1/e is the global minimum of x*log(x) at x = 1/e and the global minimum of x*e^x at x = -1. - Rick L. Shepherd, Jan 11 2014
Also, the asymptotic probability of success in the secretary problem (also known as the sultan's dowry problem). - Andrey Zabolotskiy, Sep 14 2019
The asymptotic density of numbers with an odd number of trailing zeros in their factorial base representation (A232745). - Amiram Eldar, Feb 26 2021
For large range size s where numbers are chosen randomly r times, the probability when r = s that a number is randomly chosen exactly 1 time. Also the chance that a number was not chosen at all. The general case for the probability of being chosen n times is (r/s)^n / (n! * e^(r/s)). - Mark Andreas, Oct 25 2022

Examples

			1/e = 0.3678794411714423215955237701614608674458111310317678... = A135005/5.
		

References

  • Steven R. Finch, Mathematical Constants, Encyclopedia of Mathematics and its Applications, vol. 94, Cambridge University Press, Sections 1.3 and 5,23,3, pp. 14, 409.
  • Anders Hald, A History of Probability and Statistics and Their Applications Before 1750, Wiley, NY, 1990 (Chapter 19).
  • John Harris, Jeffry L. Hirst, and Michael Mossinghoff, Combinatorics and Graph Theory, Springer Science & Business Media, 2009, p. 161.
  • L. B. W. Jolley, Summation of Series, Dover, 1961, eq. (103) on page 20.
  • Traian Lalescu, Problem 579, Gazeta Matematică, Vol. 6 (1900-1901), p. 148.
  • John Riordan, An Introduction to Combinatorial Analysis, Wiley, 1958, p. 65.
  • Manfred R. Schroeder, Number Theory in Science and Communication, Springer Science & Business Media, 2008, ch. 9.5 Derangements.
  • Jerome Spanier and Keith B. Oldham, "Atlas of Functions", Hemisphere Publishing Corp., 1987, chapter 26, page 233.
  • Walter D. Wallis and John C. George, Introduction to Combinatorics, CRC Press, 2nd ed. 2016, theorem 5.2 (The Derangement Series).
  • David Wells, The Penguin Dictionary of Curious and Interesting Numbers. Penguin Books, NY, 1986, Revised edition 1987, p. 27.

Crossrefs

Cf. A059193.
Cf. asymptotic probabilities of success for other "nothing but the best" variants of the secretary problem: A325905, A242674, A246665.

Programs

Formula

Equals 2*(1/3! + 2/5! + 3/7! + ...). [Jolley]
Equals 1 - Sum_{i >= 1} (-1)^(i - 1)/i!. [Michon]
Equals lim_{x->infinity} (1 - 1/x)^x. - Arkadiusz Wesolowski, Feb 17 2012
Equals j_1(i)/i = cos(i) + i*sin(i), where j_1(z) is the spherical Bessel function of the first kind and i = sqrt(-1). - Stanislav Sykora, Jan 11 2017
Equals Sum_{i>=0} ((-1)^i)/i!. - Maciej Kaniewski, Sep 10 2017
Equals Sum_{i>=0} ((-1)^i)(i^2+1)/i!. - Maciej Kaniewski, Sep 12 2017
From Peter Bala, Oct 23 2019: (Start)
The series representation 1/e = Sum_{k >= 0} (-1)^k/k! is the case n = 0 of the following series acceleration formulas:
1/e = n!*Sum_{k >= 0} (-1)^k/(k!*R(n,k)*R(n,k+1)), n = 0,1,2,..., where R(n,x) = Sum_{k = 0..n} (-1)^k*binomial(n,k)*k!*binomial(-x,k) are the row polynomials of A094816. (End)
1/e = 1 - Sum_{n >= 0} n!/(A(n)*A(n+1)), where A(n) = A000522(n). - Peter Bala, Nov 13 2019
Equals Integral_{x=0..1} x * sinh(x) dx. - Amiram Eldar, Aug 14 2020
Equals lim_{x->oo} (x!)^(1/x)/x. - L. Joris Perrenet, Dec 08 2020
Equals lim_{n->oo} (n+1)!^(1/(n+1)) - n!^(1/n) (Lalescu, 1900-1901). - Amiram Eldar, Mar 29 2022

Extensions

More terms from Rick L. Shepherd, Jan 11 2014

A049469 Decimal expansion of sin(1).

Original entry on oeis.org

8, 4, 1, 4, 7, 0, 9, 8, 4, 8, 0, 7, 8, 9, 6, 5, 0, 6, 6, 5, 2, 5, 0, 2, 3, 2, 1, 6, 3, 0, 2, 9, 8, 9, 9, 9, 6, 2, 2, 5, 6, 3, 0, 6, 0, 7, 9, 8, 3, 7, 1, 0, 6, 5, 6, 7, 2, 7, 5, 1, 7, 0, 9, 9, 9, 1, 9, 1, 0, 4, 0, 4, 3, 9, 1, 2, 3, 9, 6, 6, 8, 9, 4, 8, 6, 3, 9, 7, 4, 3, 5, 4, 3, 0, 5, 2, 6, 9, 5
Offset: 0

Views

Author

Albert du Toit (dutwa(AT)intekom.co.za), N. J. A. Sloane

Keywords

Comments

Also, decimal expansion of the imaginary part of e^i. - Bruno Berselli, Feb 08 2013
By the Lindemann-Weierstrass theorem, this constant is transcendental. - Charles R Greathouse IV, May 12 2019

Examples

			0.8414709848078965...
		

Crossrefs

Cf. A049470 (real part of e^i), A211883 (real part of -(i^e)), A211884 (imaginary part of -(i^e)). - Bruno Berselli, Feb 08 2013
Cf. A074790.

Programs

Formula

Continued fraction representation: sin(1) = 1 - 1/(6 + 6/(19 + 20/(41 + ... + (2*n - 1)*(2*n - 2)/((4*n^2 + 2*n - 1) + ... )))). See A074790 for details. - Peter Bala, Jan 30 2015
Equals Sum_{k > 0} (-1)^(k-1)/((2k-1)!) = Sum_{k > 0} (-1)^(k-1)/A009445(k-1) [See Gradshteyn and Ryzhik]. - A.H.M. Smeets, Sep 22 2018
Equals Product{k>=1} cos(1/2^k). - Amiram Eldar, Aug 20 2020
Equals Integral_{x=-1..1} cos(x)/[exp(1/x)+1] dx. [Nahin]. - R. J. Mathar, May 16 2024

A073743 Decimal expansion of cosh(1).

Original entry on oeis.org

1, 5, 4, 3, 0, 8, 0, 6, 3, 4, 8, 1, 5, 2, 4, 3, 7, 7, 8, 4, 7, 7, 9, 0, 5, 6, 2, 0, 7, 5, 7, 0, 6, 1, 6, 8, 2, 6, 0, 1, 5, 2, 9, 1, 1, 2, 3, 6, 5, 8, 6, 3, 7, 0, 4, 7, 3, 7, 4, 0, 2, 2, 1, 4, 7, 1, 0, 7, 6, 9, 0, 6, 3, 0, 4, 9, 2, 2, 3, 6, 9, 8, 9, 6, 4, 2, 6, 4, 7, 2, 6, 4, 3, 5, 5, 4, 3, 0, 3, 5, 5, 8, 7, 0, 4
Offset: 1

Views

Author

Rick L. Shepherd, Aug 07 2002

Keywords

Comments

Also decimal expansion of cos(i). - N. J. A. Sloane, Feb 12 2010
cosh(x) = (e^x + e^(-x))/2.
Equals Sum_{n>=0} 1/A010050(n). See Gradsteyn-Ryzhik (0.245.5). - R. J. Mathar, Oct 27 2012
By the Lindemann-Weierstrass theorem, this constant is transcendental. - Charles R Greathouse IV, May 14 2019

Examples

			1.54308063481524377847790562075...
		

References

  • S. Selby, editor, CRC Basic Mathematical Tables, CRC Press, 1970, p. 218.
  • Jerome Spanier and Keith B. Oldham, "Atlas of Functions", Hemisphere Publishing Corp., 1987, chapter 2, equation 2:5:6 at page 20.

Crossrefs

Cf. A068118 (continued fraction), A073742, A073744, A073745, A073746, A073747, A049470, A137204.

Programs

  • Maple
    Digits:=100: evalf(cosh(1)); # Wesley Ivan Hurt, Nov 18 2014
  • Mathematica
    RealDigits[Cosh[1],10,120][[1]] (* Harvey P. Dale, Aug 03 2014 *)
  • PARI
    cosh(1)

Formula

Continued fraction representation: cosh(1) = 1 + 1/(2 - 2/(13 - 12/(31 - ... - (2*n - 4)*(2*n - 5)/((4*n^2 - 10*n + 7) - ... )))). See A051396 for proof. Cf. A049470 (cos(1)) and A073742 (sinh(1)). - Peter Bala, Sep 05 2016
Equals Product_{k>=0} 1 + 4/((2*k+1)*Pi)^2. - Amiram Eldar, Jul 16 2020
Equals 1/A073746 = A137204/2. - Hugo Pfoertner, Dec 27 2024

A073742 Decimal expansion of sinh(1).

Original entry on oeis.org

1, 1, 7, 5, 2, 0, 1, 1, 9, 3, 6, 4, 3, 8, 0, 1, 4, 5, 6, 8, 8, 2, 3, 8, 1, 8, 5, 0, 5, 9, 5, 6, 0, 0, 8, 1, 5, 1, 5, 5, 7, 1, 7, 9, 8, 1, 3, 3, 4, 0, 9, 5, 8, 7, 0, 2, 2, 9, 5, 6, 5, 4, 1, 3, 0, 1, 3, 3, 0, 7, 5, 6, 7, 3, 0, 4, 3, 2, 3, 8, 9, 5, 6, 0, 7, 1, 1, 7, 4, 5, 2, 0, 8, 9, 6, 2, 3, 3, 9, 1, 8, 4, 0, 4, 1
Offset: 1

Views

Author

Rick L. Shepherd, Aug 07 2002

Keywords

Comments

By the Lindemann-Weierstrass theorem, this constant is transcendental. - Charles R Greathouse IV, May 14 2019
Decimal expansion of u > 0 such that 1 = arclength on the hyperbola y^2 - x^2 = 1 from (0,0) to (u,y(u)). - Clark Kimberling, Jul 04 2020

Examples

			1.17520119364380145688238185059...
		

References

  • S. Selby, editor, CRC Basic Mathematical Tables, CRC Press, 1970, p. 218.
  • Jerome Spanier and Keith B. Oldham, "Atlas of Functions", Hemisphere Publishing Corp., 1987, chapter 2, equation 2:5:7 at page 20.

Crossrefs

Cf. A068139 (continued fraction), A073743, A073744, A073745, A073746, A073747, A049469, A049470, A174548.

Programs

  • Mathematica
    First@ RealDigits@ N[Sinh@ 1, 120] (* Michael De Vlieger, Sep 04 2016 *)
  • PARI
    sinh(1)

Formula

Equals (e - e^(-1))/2.
Equals sin(i)/i. - N. J. A. Sloane, Feb 12 2010
Equals Sum_{n>=0} 1/A009445(n). See Gradsteyn-Ryzhik (0.245.6.) - R. J. Mathar, Oct 27 2012
Continued fraction representation: sinh(1) = 1 + 1/(6 - 6/(21 - 20/(43 - 42/(73 - ... - (2*n - 1)*(2*n - 2)/((2*n*(2*n + 1) + 1) - ... ))))). See A051397 for proof. Cf. A049469. - Peter Bala, Sep 02 2016
Equals Product_{k>=1} 1 + 1/(k * Pi)^2. - Amiram Eldar, Jul 16 2020
Equals 1/A073745 = A174548/2. - Hugo Pfoertner, Dec 27 2024

A073449 Decimal expansion of cot(1).

Original entry on oeis.org

6, 4, 2, 0, 9, 2, 6, 1, 5, 9, 3, 4, 3, 3, 0, 7, 0, 3, 0, 0, 6, 4, 1, 9, 9, 8, 6, 5, 9, 4, 2, 6, 5, 6, 2, 0, 2, 3, 0, 2, 7, 8, 1, 1, 3, 9, 1, 8, 1, 7, 1, 3, 7, 9, 1, 0, 1, 1, 6, 2, 2, 8, 0, 4, 2, 6, 2, 7, 6, 8, 5, 6, 8, 3, 9, 1, 6, 4, 6, 7, 2, 1, 9, 8, 4, 8, 2, 9, 1, 9, 7, 6, 0, 1, 9, 6, 8, 0, 4, 6, 5, 8, 1, 4
Offset: 0

Views

Author

Rick L. Shepherd, Aug 01 2002

Keywords

Comments

By the Lindemann-Weierstrass theorem, this constant is transcendental. - Charles R Greathouse IV, May 13 2019

Examples

			0.64209261593433070300641998659...
		

Crossrefs

Cf. A049471 (tan(1)=1/A073449), A049469 (sin(1)), A049470 (cos(1)), A073447 (csc(1)), A073448 (sec(1)).

Programs

  • Mathematica
    RealDigits[Cot[1], 10, 100][[1]] (* Amiram Eldar, May 15 2021 *)
  • PARI
    cotan(1)

Formula

Equals Sum_{k>=0} (-1)^k * B(2*k) * 2^(2*k) / (2*k)!, where B(k) is the k-th Bernoulli number. - Amiram Eldar, May 15 2021

A346441 Decimal expansion of the constant Sum_{k>=0} (-1)^k/(3*k)!.

Original entry on oeis.org

8, 3, 4, 7, 1, 9, 4, 6, 8, 5, 7, 7, 2, 1, 0, 9, 6, 2, 2, 1, 9, 2, 8, 3, 2, 3, 9, 2, 0, 8, 3, 3, 0, 0, 7, 0, 8, 4, 0, 3, 7, 9, 0, 5, 1, 9, 9, 8, 2, 6, 9, 7, 6, 7, 6, 2, 7, 6, 9, 5, 1, 0, 7, 9, 5, 2, 5, 9, 2, 7, 8, 4, 3, 6, 8, 7, 2, 2, 2, 2, 3, 8, 9, 7, 3, 0, 0
Offset: 0

Views

Author

Sean A. Irvine, Jul 17 2021

Keywords

Examples

			0.8347194685772109622192832392...
		

Crossrefs

Programs

  • Mathematica
    RealDigits[Sum[(-1)^k/(3*k)!, {k, 0, Infinity}], 10, 100][[1]] (* Amiram Eldar, Jul 18 2021 *)
  • PARI
    sumalt(k=0, (-1)^k/(3*k)!) \\ Michel Marcus, Jul 18 2021

Formula

Equals 1/(3*e) + 2*sqrt(e)*cos(sqrt(3)/2)/3. - Amiram Eldar, Jul 18 2021
Continued fraction: 1/(1 + 1/(5 + 6/(119 + 120/(503 + ... + P(n-1)/((P(n) - 1) + ... ))))), where P(n) = (3*n)*(3*n - 1)*(3*n - 2) for n >= 1. See Bowman and Mc Laughlin, Corollary 10, p. 341 with m = 1, who also show that the constant is irrational. - Peter Bala, Feb 21 2024

A073447 Decimal expansion of csc(1).

Original entry on oeis.org

1, 1, 8, 8, 3, 9, 5, 1, 0, 5, 7, 7, 8, 1, 2, 1, 2, 1, 6, 2, 6, 1, 5, 9, 9, 4, 5, 2, 3, 7, 4, 5, 5, 1, 0, 0, 3, 5, 2, 7, 8, 2, 9, 8, 3, 4, 0, 9, 7, 9, 6, 2, 6, 2, 5, 2, 6, 5, 2, 5, 3, 6, 6, 6, 3, 5, 9, 1, 8, 4, 3, 6, 7, 3, 5, 7, 1, 9, 0, 4, 8, 7, 9, 1, 3, 6, 6, 3, 5, 6, 8, 0, 3, 0, 8, 5, 3, 0, 2, 3, 2, 4, 7, 2, 4
Offset: 1

Views

Author

Rick L. Shepherd, Aug 01 2002

Keywords

Comments

By the Lindemann-Weierstrass theorem, this constant is transcendental. - Charles R Greathouse IV, May 13 2019

Examples

			1.18839510577812121626159945237...
		

Crossrefs

Cf. A049469 (sin(1)=1/A073447), A049470 (cos(1)), A049471 (tan(1)), A073448 (sec(1)), A073449 (cot(1)).

Programs

  • Mathematica
    RealDigits[Csc[1], 10, 120][[1]] (* Amiram Eldar, May 29 2023 *)
  • PARI
    1/sin(1)

Formula

Equals Sum_{n=-oo..oo} ((-1)^n/(1 + n*Pi)). - Jean-François Alcover, Mar 21 2013.
Equals Sum_{k>=0} (-1)^k * (2 - 4^k) * bernoulli(2*k)/(2*k)! = Sum_{k>=0} (-1)^k * (2 - 4^k) * A027641(2*k)/(A027642(2*k)*(2*k)!). - Amiram Eldar, Aug 03 2020

A073448 Decimal expansion of sec(1).

Original entry on oeis.org

1, 8, 5, 0, 8, 1, 5, 7, 1, 7, 6, 8, 0, 9, 2, 5, 6, 1, 7, 9, 1, 1, 7, 5, 3, 2, 4, 1, 3, 9, 8, 6, 5, 0, 1, 9, 3, 4, 7, 0, 3, 9, 6, 6, 5, 5, 0, 9, 4, 0, 0, 9, 2, 9, 8, 8, 3, 5, 1, 5, 8, 2, 7, 7, 8, 5, 8, 8, 1, 5, 4, 1, 1, 2, 6, 1, 5, 9, 6, 7, 0, 5, 9, 2, 1, 8, 4, 1, 4, 1, 3, 2, 8, 7, 3, 0, 6, 6, 7, 1, 1, 4, 9, 1, 0
Offset: 1

Views

Author

Rick L. Shepherd, Aug 01 2002

Keywords

Comments

By the Lindemann-Weierstrass theorem, this constant is transcendental. - Charles R Greathouse IV, May 13 2019

Examples

			1.85081571768092561791175324139...
		

Crossrefs

Cf. A049470 (cos(1)=1/A073448), A049469 (sin(1)), A049471 (tan(1)), A073447 (csc(1)), A073449 (cot(1)), A122045.

Programs

  • Mathematica
    RealDigits[Sec[1],10,120][[1]] (* Harvey P. Dale, Mar 13 2013 *)
  • PARI
    1/cos(1)

Formula

Equals Sum_{k>=0} (-1)^k * E(2*k) / (2*k)!, where E(k) is the k-th Euler number (A122045). - Amiram Eldar, May 15 2021

A143623 Decimal expansion of the constant cos(1) + sin(1).

Original entry on oeis.org

1, 3, 8, 1, 7, 7, 3, 2, 9, 0, 6, 7, 6, 0, 3, 6, 2, 2, 4, 0, 5, 3, 4, 3, 8, 9, 2, 9, 0, 7, 3, 2, 7, 5, 6, 0, 3, 3, 5, 4, 8, 7, 3, 4, 8, 1, 4, 1, 6, 2, 9, 3, 2, 9, 3, 3, 4, 2, 8, 4, 8, 9, 6, 5, 3, 7, 3, 0, 1, 0, 7, 9, 9, 1, 6, 5, 7, 1, 1, 4, 3, 3, 4, 6, 6, 5, 9, 1, 5, 9, 9, 6, 3, 0, 2, 3, 5, 7, 8, 5, 1
Offset: 1

Views

Author

Peter Bala, Aug 30 2008

Keywords

Comments

cos(1) + sin(1) = Sum_{n >= 0} (-1)^floor(n/2)/n! = 1 + 1/1! - 1/2! - 1/3! + 1/4! + 1/5! - 1/6! - 1/7! + + - - ... .
Define E_2(k) = Sum_{n >= 0} (-1)^floor(n/2)*n^k/n! for k = 0, 1, 2, ... . Then E_2(0) = cos(1) + sin(1) and E_2(1) = cos(1) - sin(1).
Furthermore, E_2(k) is an integral linear combination of E_2(0) and E_2(1) (a Dobinski-type relation). For example, E_2(2) = E_2(1) - E_2(0), E_2(3) = -3*E_2(0) and E_2(4) = -5*E_2(1) - 6*E_2(0). The precise result is E_2(k) = A121867(k) * E_2(0) - A121868(k) * E_2(1).
The decimal expansion of the constant cos(1) - sin(1) = E_2(1) is recorded in A143624. Compare with A143625.

Examples

			1.38177329067603622405 ... .
		

Crossrefs

Programs

Formula

Equals sin(1+Pi/4)*sqrt(2). - Franklin T. Adams-Watters, Jun 27 2014

Extensions

Offset corrected by R. J. Mathar, Feb 05 2009

A051396 a(n) = (2*n-2)*(2*n-3)*a(n-1)+1.

Original entry on oeis.org

0, 1, 3, 37, 1111, 62217, 5599531, 739138093, 134523132927, 32285551902481, 9879378882159187, 3754163975220491061, 1734423756551866870183, 957401913616630512341017, 622311243850809833021661051, 470467300351212233764375754557, 409306551305554643375006906464591
Offset: 0

Views

Author

Keywords

Comments

The sequence 1,0,3,0,37,... has e.g.f. cosh(x)/(1-x^2) with a(n) = Sum_{k=0..n} C(n,k)k!(1+(-1)^k)(1+(-1)^(n-k))/4. - Paul Barry, May 01 2005

Crossrefs

Bisection of abs(A009179(n)). Cf. A049470 (cos(1)), A073743 (cosh(1)), A275651.

Programs

  • Maple
    A051396 := proc(n) option remember; if n <= 1 then n else (2*n-2)*(2*n-3)*A051396(n-1)+1; fi; end;
  • Mathematica
    a[0] = 0; a[n_] := a[n] = (2*n-2)*(2*n-3)*a[n-1] + 1;
    Table[a[n], {n, 0, 16}] (* Jean-François Alcover, Dec 11 2017 *)
    nxt[{n_,a_}]:={n+1,a(4n^2-2n)+1}; NestList[nxt,{0,0},20][[;;,2]] (* Harvey P. Dale, Sep 26 2023 *)

Formula

a(n) = Sum_{k=0..n-1} (2*n-2)!/(2*k)! = floor((2*n-2)!*cosh(1)), n>=1. - Vladeta Jovovic, Aug 10 2002
a(n+1) = Sum_{k=0..2n}, C(2n, k)*k!*(1+(-1)^k)^2. - Paul Barry, May 01 2005
a(n) +(-4*n^2+10*n-7)*a(n-1) +2*(n-2)*(2*n-5)*a(n-2)=0. - R. J. Mathar, Nov 26 2012
From Peter Bala, Sep 05 2016: (Start)
The sequence b(n) := (2*n - 2)! also satisfies Mathar's recurrence with b(1) = 1, b(2) = 2. This leads to the continued fraction representation a(n) = (2*n - 2)!*(1 + 1/(2 - 2/(13 - 12/(31 - ... - (2*n - 4)*(2*n - 5)/(4*n^2 - 10*n + 7) )))) for n >= 3. Taking the limit gives the continued fraction representation cosh(1) = A073743 = 1 + 1/(2 - 2/(13 - 12/(31 - ... - (2*n - 4)*(2*n - 5)/((4*n^2 - 10*n + 7) - ... )))). (End)
Showing 1-10 of 63 results. Next