cp's OEIS Frontend

This is a front-end for the Online Encyclopedia of Integer Sequences, made by Christian Perfect. The idea is to provide OEIS entries in non-ancient HTML, and then to think about how they're presented visually. The source code is on GitHub.

Showing 1-10 of 55 results. Next

A049470 Decimal expansion of cos(1).

Original entry on oeis.org

5, 4, 0, 3, 0, 2, 3, 0, 5, 8, 6, 8, 1, 3, 9, 7, 1, 7, 4, 0, 0, 9, 3, 6, 6, 0, 7, 4, 4, 2, 9, 7, 6, 6, 0, 3, 7, 3, 2, 3, 1, 0, 4, 2, 0, 6, 1, 7, 9, 2, 2, 2, 2, 7, 6, 7, 0, 0, 9, 7, 2, 5, 5, 3, 8, 1, 1, 0, 0, 3, 9, 4, 7, 7, 4, 4, 7, 1, 7, 6, 4, 5, 1, 7, 9, 5, 1, 8, 5, 6, 0, 8, 7, 1, 8, 3, 0, 8, 9
Offset: 0

Views

Author

Albert du Toit (dutwa(AT)intekom.co.za), N. J. A. Sloane

Keywords

Comments

Also, decimal expansion of the real part of e^i. - Bruno Berselli, Feb 08 2013
By the Lindemann-Weierstrass theorem, this constant is transcendental. - Charles R Greathouse IV, May 13 2019

Examples

			0.5403023058681397...
		

Crossrefs

Cf. A049469 (imaginary part of e^i), A211883 (real part of -(i^e)), A211884 (imaginary part of -(i^e)). - Bruno Berselli, Feb 08 2013
Cf. A073743 ( cosh(1) ), A073448, A275651.

Programs

Formula

Continued fraction representation: cos(1) = 1/(1 + 1/(1 + 2/(11 + 12/(29 + ... + (2*n - 2)*(2*n - 3)/((4*n^2 - 2*n - 1) + ... ))))). See A275651 for proof. Cf. A073743. - Peter Bala, Sep 02 2016
Equals Sum_{k >= 0} (-1)^k/A010050(k), where A010050(k) = (2k)! [See Gradshteyn and Ryzhik]. - A.H.M. Smeets, Sep 22 2018
Equals 1/A073448. - Alois P. Heinz, Jan 23 2023
From Gerry Martens, May 04 2024: (Start)
Equals (4*(cos(1/4)^4 + sin(1/4)^4) - 3).
Equals (16*(cos(1/4)^6 + sin(1/4)^6) - 10)/6. (End)

A073742 Decimal expansion of sinh(1).

Original entry on oeis.org

1, 1, 7, 5, 2, 0, 1, 1, 9, 3, 6, 4, 3, 8, 0, 1, 4, 5, 6, 8, 8, 2, 3, 8, 1, 8, 5, 0, 5, 9, 5, 6, 0, 0, 8, 1, 5, 1, 5, 5, 7, 1, 7, 9, 8, 1, 3, 3, 4, 0, 9, 5, 8, 7, 0, 2, 2, 9, 5, 6, 5, 4, 1, 3, 0, 1, 3, 3, 0, 7, 5, 6, 7, 3, 0, 4, 3, 2, 3, 8, 9, 5, 6, 0, 7, 1, 1, 7, 4, 5, 2, 0, 8, 9, 6, 2, 3, 3, 9, 1, 8, 4, 0, 4, 1
Offset: 1

Views

Author

Rick L. Shepherd, Aug 07 2002

Keywords

Comments

By the Lindemann-Weierstrass theorem, this constant is transcendental. - Charles R Greathouse IV, May 14 2019
Decimal expansion of u > 0 such that 1 = arclength on the hyperbola y^2 - x^2 = 1 from (0,0) to (u,y(u)). - Clark Kimberling, Jul 04 2020

Examples

			1.17520119364380145688238185059...
		

References

  • S. Selby, editor, CRC Basic Mathematical Tables, CRC Press, 1970, p. 218.
  • Jerome Spanier and Keith B. Oldham, "Atlas of Functions", Hemisphere Publishing Corp., 1987, chapter 2, equation 2:5:7 at page 20.

Crossrefs

Cf. A068139 (continued fraction), A073743, A073744, A073745, A073746, A073747, A049469, A049470, A174548.

Programs

  • Mathematica
    First@ RealDigits@ N[Sinh@ 1, 120] (* Michael De Vlieger, Sep 04 2016 *)
  • PARI
    sinh(1)

Formula

Equals (e - e^(-1))/2.
Equals sin(i)/i. - N. J. A. Sloane, Feb 12 2010
Equals Sum_{n>=0} 1/A009445(n). See Gradsteyn-Ryzhik (0.245.6.) - R. J. Mathar, Oct 27 2012
Continued fraction representation: sinh(1) = 1 + 1/(6 - 6/(21 - 20/(43 - 42/(73 - ... - (2*n - 1)*(2*n - 2)/((2*n*(2*n + 1) + 1) - ... ))))). See A051397 for proof. Cf. A049469. - Peter Bala, Sep 02 2016
Equals Product_{k>=1} 1 + 1/(k * Pi)^2. - Amiram Eldar, Jul 16 2020
Equals 1/A073745 = A174548/2. - Hugo Pfoertner, Dec 27 2024

A073449 Decimal expansion of cot(1).

Original entry on oeis.org

6, 4, 2, 0, 9, 2, 6, 1, 5, 9, 3, 4, 3, 3, 0, 7, 0, 3, 0, 0, 6, 4, 1, 9, 9, 8, 6, 5, 9, 4, 2, 6, 5, 6, 2, 0, 2, 3, 0, 2, 7, 8, 1, 1, 3, 9, 1, 8, 1, 7, 1, 3, 7, 9, 1, 0, 1, 1, 6, 2, 2, 8, 0, 4, 2, 6, 2, 7, 6, 8, 5, 6, 8, 3, 9, 1, 6, 4, 6, 7, 2, 1, 9, 8, 4, 8, 2, 9, 1, 9, 7, 6, 0, 1, 9, 6, 8, 0, 4, 6, 5, 8, 1, 4
Offset: 0

Views

Author

Rick L. Shepherd, Aug 01 2002

Keywords

Comments

By the Lindemann-Weierstrass theorem, this constant is transcendental. - Charles R Greathouse IV, May 13 2019

Examples

			0.64209261593433070300641998659...
		

Crossrefs

Cf. A049471 (tan(1)=1/A073449), A049469 (sin(1)), A049470 (cos(1)), A073447 (csc(1)), A073448 (sec(1)).

Programs

  • Mathematica
    RealDigits[Cot[1], 10, 100][[1]] (* Amiram Eldar, May 15 2021 *)
  • PARI
    cotan(1)

Formula

Equals Sum_{k>=0} (-1)^k * B(2*k) * 2^(2*k) / (2*k)!, where B(k) is the k-th Bernoulli number. - Amiram Eldar, May 15 2021

A073447 Decimal expansion of csc(1).

Original entry on oeis.org

1, 1, 8, 8, 3, 9, 5, 1, 0, 5, 7, 7, 8, 1, 2, 1, 2, 1, 6, 2, 6, 1, 5, 9, 9, 4, 5, 2, 3, 7, 4, 5, 5, 1, 0, 0, 3, 5, 2, 7, 8, 2, 9, 8, 3, 4, 0, 9, 7, 9, 6, 2, 6, 2, 5, 2, 6, 5, 2, 5, 3, 6, 6, 6, 3, 5, 9, 1, 8, 4, 3, 6, 7, 3, 5, 7, 1, 9, 0, 4, 8, 7, 9, 1, 3, 6, 6, 3, 5, 6, 8, 0, 3, 0, 8, 5, 3, 0, 2, 3, 2, 4, 7, 2, 4
Offset: 1

Views

Author

Rick L. Shepherd, Aug 01 2002

Keywords

Comments

By the Lindemann-Weierstrass theorem, this constant is transcendental. - Charles R Greathouse IV, May 13 2019

Examples

			1.18839510577812121626159945237...
		

Crossrefs

Cf. A049469 (sin(1)=1/A073447), A049470 (cos(1)), A049471 (tan(1)), A073448 (sec(1)), A073449 (cot(1)).

Programs

  • Mathematica
    RealDigits[Csc[1], 10, 120][[1]] (* Amiram Eldar, May 29 2023 *)
  • PARI
    1/sin(1)

Formula

Equals Sum_{n=-oo..oo} ((-1)^n/(1 + n*Pi)). - Jean-François Alcover, Mar 21 2013.
Equals Sum_{k>=0} (-1)^k * (2 - 4^k) * bernoulli(2*k)/(2*k)! = Sum_{k>=0} (-1)^k * (2 - 4^k) * A027641(2*k)/(A027642(2*k)*(2*k)!). - Amiram Eldar, Aug 03 2020

A073448 Decimal expansion of sec(1).

Original entry on oeis.org

1, 8, 5, 0, 8, 1, 5, 7, 1, 7, 6, 8, 0, 9, 2, 5, 6, 1, 7, 9, 1, 1, 7, 5, 3, 2, 4, 1, 3, 9, 8, 6, 5, 0, 1, 9, 3, 4, 7, 0, 3, 9, 6, 6, 5, 5, 0, 9, 4, 0, 0, 9, 2, 9, 8, 8, 3, 5, 1, 5, 8, 2, 7, 7, 8, 5, 8, 8, 1, 5, 4, 1, 1, 2, 6, 1, 5, 9, 6, 7, 0, 5, 9, 2, 1, 8, 4, 1, 4, 1, 3, 2, 8, 7, 3, 0, 6, 6, 7, 1, 1, 4, 9, 1, 0
Offset: 1

Views

Author

Rick L. Shepherd, Aug 01 2002

Keywords

Comments

By the Lindemann-Weierstrass theorem, this constant is transcendental. - Charles R Greathouse IV, May 13 2019

Examples

			1.85081571768092561791175324139...
		

Crossrefs

Cf. A049470 (cos(1)=1/A073448), A049469 (sin(1)), A049471 (tan(1)), A073447 (csc(1)), A073449 (cot(1)), A122045.

Programs

  • Mathematica
    RealDigits[Sec[1],10,120][[1]] (* Harvey P. Dale, Mar 13 2013 *)
  • PARI
    1/cos(1)

Formula

Equals Sum_{k>=0} (-1)^k * E(2*k) / (2*k)!, where E(k) is the k-th Euler number (A122045). - Amiram Eldar, May 15 2021

A143623 Decimal expansion of the constant cos(1) + sin(1).

Original entry on oeis.org

1, 3, 8, 1, 7, 7, 3, 2, 9, 0, 6, 7, 6, 0, 3, 6, 2, 2, 4, 0, 5, 3, 4, 3, 8, 9, 2, 9, 0, 7, 3, 2, 7, 5, 6, 0, 3, 3, 5, 4, 8, 7, 3, 4, 8, 1, 4, 1, 6, 2, 9, 3, 2, 9, 3, 3, 4, 2, 8, 4, 8, 9, 6, 5, 3, 7, 3, 0, 1, 0, 7, 9, 9, 1, 6, 5, 7, 1, 1, 4, 3, 3, 4, 6, 6, 5, 9, 1, 5, 9, 9, 6, 3, 0, 2, 3, 5, 7, 8, 5, 1
Offset: 1

Views

Author

Peter Bala, Aug 30 2008

Keywords

Comments

cos(1) + sin(1) = Sum_{n >= 0} (-1)^floor(n/2)/n! = 1 + 1/1! - 1/2! - 1/3! + 1/4! + 1/5! - 1/6! - 1/7! + + - - ... .
Define E_2(k) = Sum_{n >= 0} (-1)^floor(n/2)*n^k/n! for k = 0, 1, 2, ... . Then E_2(0) = cos(1) + sin(1) and E_2(1) = cos(1) - sin(1).
Furthermore, E_2(k) is an integral linear combination of E_2(0) and E_2(1) (a Dobinski-type relation). For example, E_2(2) = E_2(1) - E_2(0), E_2(3) = -3*E_2(0) and E_2(4) = -5*E_2(1) - 6*E_2(0). The precise result is E_2(k) = A121867(k) * E_2(0) - A121868(k) * E_2(1).
The decimal expansion of the constant cos(1) - sin(1) = E_2(1) is recorded in A143624. Compare with A143625.

Examples

			1.38177329067603622405 ... .
		

Crossrefs

Programs

Formula

Equals sin(1+Pi/4)*sqrt(2). - Franklin T. Adams-Watters, Jun 27 2014

Extensions

Offset corrected by R. J. Mathar, Feb 05 2009

A143624 Decimal expansion of the negated constant cos(1) - sin(1) = -0.3011686789...

Original entry on oeis.org

3, 0, 1, 1, 6, 8, 6, 7, 8, 9, 3, 9, 7, 5, 6, 7, 8, 9, 2, 5, 1, 5, 6, 5, 7, 1, 4, 1, 8, 7, 3, 2, 2, 3, 9, 5, 8, 9, 0, 2, 5, 2, 6, 4, 0, 1, 8, 0, 4, 4, 8, 8, 3, 8, 0, 0, 2, 6, 5, 4, 4, 5, 4, 6, 1, 0, 8, 1, 0, 0, 0, 9, 6, 1, 6, 7, 6, 7, 9, 0, 4, 4, 3, 0, 6, 8, 7, 8, 8, 7, 4, 5, 5, 8, 6, 9, 6, 0, 6, 5
Offset: 0

Views

Author

Peter Bala, Aug 30 2008

Keywords

Comments

cos(1) - sin(1) = Sum_{n>=0} (-1)^floor(n/2)*n/n! = 1/1! - 2/2! - 3/3! + 4/4! + 5/5! - 6/6! - 7/7! + + - - ... . Define E_2(k) = Sum_{n>=0} (-1)^floor(n/2)*n^k/n! for k = 0,1,2,... . Then E_2(1) = cos(1) - sin(1) and E_2(0) = cos(1) + sin(1). Furthermore, E_2(k) is an integral linear combination of E_2(0) and E_2(1) (a Dobinski-type relation). For example, E_2(2) = E_2(1) - E_2(0), E_2(3) = -3*E_2(0) and E_2(4) = -5*E_2(1) - 6*E_2(0). The precise result is E_2(k) = A121867(k) * E_2(0) - A121868(k) * E_2(1). The decimal expansion of the constant cos(1) + sin(1) is recorded in A143623. Compare with A143625.

Examples

			 -0.30116867893975678925156571418732239589025264018...
		

Crossrefs

Programs

Formula

Equals sin(1-Pi/4)*sqrt(2). - Franklin T. Adams-Watters, Jun 27 2014
Equals j_1(1), where j_1(z) is the spherical Bessel function of the first kind. - Stanislav Sykora, Jan 11 2017
From Amiram Eldar, Aug 07 2020: (Start)
Equals -Integral_{x=0..1} x*sin(x) dx.
Equals Sum_{k>=1} (-1)^k/((2*k-1)! * (2*k+1)) = Sum_{k>=1} (-1)^k/A174549(k). (End)

Extensions

Added sign in definition. Offset corrected by R. J. Mathar, Feb 05 2009

A354332 a(n) is the numerator of Sum_{k=0..n} (-1)^k / (2*k+1)!.

Original entry on oeis.org

1, 5, 101, 4241, 305353, 33588829, 209594293, 1100370038249, 23023126954133, 102360822438075317, 42991545423991633141, 4350744396907953273869, 13052233190723859821607001, 9162667699888149594768114701, 7440086172309177470951709137213, 364172638960396581472899447242531
Offset: 0

Views

Author

Ilya Gutkovskiy, May 24 2022

Keywords

Examples

			1, 5/6, 101/120, 4241/5040, 305353/362880, 33588829/39916800, 209594293/249080832, ...
		

Crossrefs

Programs

  • Mathematica
    Table[Sum[(-1)^k/(2 k + 1)!, {k, 0, n}], {n, 0, 15}] // Numerator
    nmax = 15; CoefficientList[Series[Sin[Sqrt[x]]/(Sqrt[x] (1 - x)), {x, 0, nmax}], x] // Numerator
  • PARI
    a(n) = numerator(sum(k=0, n, (-1)^k/(2*k+1)!)); \\ Michel Marcus, May 24 2022
    
  • Python
    from fractions import Fraction
    from math import factorial
    def A354332(n): return sum(Fraction(-1 if k % 2 else 1,factorial(2*k+1)) for k in range(n+1)).numerator # Chai Wah Wu, May 24 2022

Formula

Numerators of coefficients in expansion of sin(sqrt(x)) / (sqrt(x) * (1 - x)).

A354333 a(n) is the denominator of Sum_{k=0..n} (-1)^k / (2*k+1)!.

Original entry on oeis.org

1, 6, 120, 5040, 362880, 39916800, 249080832, 1307674368000, 27360571392000, 121645100408832000, 51090942171709440000, 5170403347776995328000, 15511210043330985984000000, 10888869450418352160768000000, 8841761993739701954543616000000, 432780981798838043038187520000000
Offset: 0

Views

Author

Ilya Gutkovskiy, May 24 2022

Keywords

Examples

			1, 5/6, 101/120, 4241/5040, 305353/362880, 33588829/39916800, 209594293/249080832, ...
		

Crossrefs

Programs

  • Mathematica
    Table[Sum[(-1)^k/(2 k + 1)!, {k, 0, n}], {n, 0, 15}] // Denominator
    nmax = 15; CoefficientList[Series[Sin[Sqrt[x]]/(Sqrt[x] (1 - x)), {x, 0, nmax}], x] // Denominator
  • PARI
    a(n) = denominator(sum(k=0, n, (-1)^k/(2*k+1)!)); \\ Michel Marcus, May 24 2022
    
  • Python
    from fractions import Fraction
    from math import factorial
    def A354333(n): return sum(Fraction(-1 if k % 2 else 1,factorial(2*k+1)) for k in range(n+1)).denominator # Chai Wah Wu, May 24 2022

Formula

Denominators of coefficients in expansion of sin(sqrt(x)) / (sqrt(x) * (1 - x)).

A074790 a(n) = (2*n+1)!*Sum_{k=0..n} (-1)^k/(2*k+1)!.

Original entry on oeis.org

1, 5, 101, 4241, 305353, 33588829, 5239857325, 1100370038249, 299300650403729, 102360822438075317, 42991545423991633141, 21753721984539766369345, 13052233190723859821607001, 9162667699888149594768114701
Offset: 0

Views

Author

Benoit Cloitre, Sep 07 2002

Keywords

Crossrefs

Programs

  • Mathematica
    Table[(2n+1)!Sum[(-1)^k/(2k+1)!,{k,0,n}],{n,0,20}] (* Harvey P. Dale, Sep 14 2019 *)
  • PARI
    a(n) = (2*n+1)!*sum(k=0,n,(-1)^k/(2*k+1)!); \\ Michel Marcus, Sep 09 2016
    
  • Sage
    [factorial(2*n+1)*sum((-1)^j/factorial(2*j+1) for j in (0..n)) for n in (0..20)] # G. C. Greubel, Jul 09 2021

Formula

a(n) = round(sin(1)*(2*n+1)!).
a(n) = A009551(2*n+1).
From Peter Bala, Jan 30 2015: (Start)
G.f.: sin(x)/(1 - x^2) = x + 5*x^3/3! + 101*x^5/5! + 4241*x^7/7! + ....
a(n) = 2*n*(2*n + 1)*a(n-1) + (-1)^n with a(0) = 1.
a(n) = (4*n^2 + 2*n - 1)*a(n-1) + (2*n-1)*(2*n-2)*a(n-2) with a(0) = 1, a(1) = 5.
The sequence b(n) := (2*n + 1)! also satisfies the second recurrence but with b(0) = 1, b(1) = 6. This leads to the continued fraction representation a(n) = (2*n + 1)!*(1 - 1/(6 + 6/(19 + 20/(41 + ... + (2*n - 1)*(2*n - 2)/(4*n^2 + 2*n - 1) )))) for n >= 2. Taking the limit gives the continued fraction representation sin(1) = 1 - 1/(6 + 6/(19 + 20/(41 + ... + (2*n - 1)*(2*n - 2)/((4*n^2 + 2*n - 1) + ... )))). (End)
Showing 1-10 of 55 results. Next