cp's OEIS Frontend

This is a front-end for the Online Encyclopedia of Integer Sequences, made by Christian Perfect. The idea is to provide OEIS entries in non-ancient HTML, and then to think about how they're presented visually. The source code is on GitHub.

Showing 1-10 of 18 results. Next

A049471 Decimal expansion of tan(1).

Original entry on oeis.org

1, 5, 5, 7, 4, 0, 7, 7, 2, 4, 6, 5, 4, 9, 0, 2, 2, 3, 0, 5, 0, 6, 9, 7, 4, 8, 0, 7, 4, 5, 8, 3, 6, 0, 1, 7, 3, 0, 8, 7, 2, 5, 0, 7, 7, 2, 3, 8, 1, 5, 2, 0, 0, 3, 8, 3, 8, 3, 9, 4, 6, 6, 0, 5, 6, 9, 8, 8, 6, 1, 3, 9, 7, 1, 5, 1, 7, 2, 7, 2, 8, 9, 5, 5, 5, 0, 9, 9, 9, 6, 5, 2, 0, 2, 2, 4, 2, 9, 8
Offset: 1

Views

Author

Albert du Toit (dutwa(AT)intekom.co.za), N. J. A. Sloane

Keywords

Comments

By the Lindemann-Weierstrass theorem, this constant is transcendental. - Charles R Greathouse IV, May 13 2019

Examples

			1.5574077246549022305...
		

Crossrefs

Cf. A093178 (continued fraction), A009001, A073449.

Programs

  • Mathematica
    RealDigits[Tan[1], 10, 100][[1]] (* Amiram Eldar, May 15 2021 *)
  • PARI
    default(realprecision, 20080); x=tan(1); for (n=1, 20000, d=floor(x); x=(x-d)*10; write("b049471.txt", n, " ", d)); \\

Formula

Equals Sum_{k>=1} (-1)^(k+1) * B(2*k) * 2^(2*k) * (2^(2*k) - 1) / (2*k)!, where B(k) is the k-th Bernoulli number. - Amiram Eldar, May 15 2021

A073447 Decimal expansion of csc(1).

Original entry on oeis.org

1, 1, 8, 8, 3, 9, 5, 1, 0, 5, 7, 7, 8, 1, 2, 1, 2, 1, 6, 2, 6, 1, 5, 9, 9, 4, 5, 2, 3, 7, 4, 5, 5, 1, 0, 0, 3, 5, 2, 7, 8, 2, 9, 8, 3, 4, 0, 9, 7, 9, 6, 2, 6, 2, 5, 2, 6, 5, 2, 5, 3, 6, 6, 6, 3, 5, 9, 1, 8, 4, 3, 6, 7, 3, 5, 7, 1, 9, 0, 4, 8, 7, 9, 1, 3, 6, 6, 3, 5, 6, 8, 0, 3, 0, 8, 5, 3, 0, 2, 3, 2, 4, 7, 2, 4
Offset: 1

Views

Author

Rick L. Shepherd, Aug 01 2002

Keywords

Comments

By the Lindemann-Weierstrass theorem, this constant is transcendental. - Charles R Greathouse IV, May 13 2019

Examples

			1.18839510577812121626159945237...
		

Crossrefs

Cf. A049469 (sin(1)=1/A073447), A049470 (cos(1)), A049471 (tan(1)), A073448 (sec(1)), A073449 (cot(1)).

Programs

  • Mathematica
    RealDigits[Csc[1], 10, 120][[1]] (* Amiram Eldar, May 29 2023 *)
  • PARI
    1/sin(1)

Formula

Equals Sum_{n=-oo..oo} ((-1)^n/(1 + n*Pi)). - Jean-François Alcover, Mar 21 2013.
Equals Sum_{k>=0} (-1)^k * (2 - 4^k) * bernoulli(2*k)/(2*k)! = Sum_{k>=0} (-1)^k * (2 - 4^k) * A027641(2*k)/(A027642(2*k)*(2*k)!). - Amiram Eldar, Aug 03 2020

A073448 Decimal expansion of sec(1).

Original entry on oeis.org

1, 8, 5, 0, 8, 1, 5, 7, 1, 7, 6, 8, 0, 9, 2, 5, 6, 1, 7, 9, 1, 1, 7, 5, 3, 2, 4, 1, 3, 9, 8, 6, 5, 0, 1, 9, 3, 4, 7, 0, 3, 9, 6, 6, 5, 5, 0, 9, 4, 0, 0, 9, 2, 9, 8, 8, 3, 5, 1, 5, 8, 2, 7, 7, 8, 5, 8, 8, 1, 5, 4, 1, 1, 2, 6, 1, 5, 9, 6, 7, 0, 5, 9, 2, 1, 8, 4, 1, 4, 1, 3, 2, 8, 7, 3, 0, 6, 6, 7, 1, 1, 4, 9, 1, 0
Offset: 1

Views

Author

Rick L. Shepherd, Aug 01 2002

Keywords

Comments

By the Lindemann-Weierstrass theorem, this constant is transcendental. - Charles R Greathouse IV, May 13 2019

Examples

			1.85081571768092561791175324139...
		

Crossrefs

Cf. A049470 (cos(1)=1/A073448), A049469 (sin(1)), A049471 (tan(1)), A073447 (csc(1)), A073449 (cot(1)), A122045.

Programs

  • Mathematica
    RealDigits[Sec[1],10,120][[1]] (* Harvey P. Dale, Mar 13 2013 *)
  • PARI
    1/cos(1)

Formula

Equals Sum_{k>=0} (-1)^k * E(2*k) / (2*k)!, where E(k) is the k-th Euler number (A122045). - Amiram Eldar, May 15 2021

A019987 Decimal expansion of tangent of 89 degrees.

Original entry on oeis.org

5, 7, 2, 8, 9, 9, 6, 1, 6, 3, 0, 7, 5, 9, 4, 2, 4, 6, 8, 7, 2, 7, 8, 1, 4, 7, 5, 3, 7, 1, 1, 2, 5, 7, 7, 9, 8, 0, 2, 1, 7, 5, 2, 2, 2, 3, 5, 1, 4, 3, 9, 2, 6, 4, 7, 2, 5, 8, 1, 1, 0, 3, 6, 0, 6, 5, 2, 9, 2, 2, 8, 9, 3, 6, 4, 7, 9, 1, 9, 3, 0, 6, 7, 2, 4, 1, 6, 2, 8, 2, 2, 0, 6, 8, 3, 8, 8, 0, 6
Offset: 2

Views

Author

Keywords

Comments

Also cotangent of 1 degree. - Mohammad K. Azarian, Jan 21 2006
An algebraic integer of degree 24. - Charles R Greathouse IV, Aug 27 2017
The least k > 0 such that floor(cot(1°)*10^k) is prime is k = 39. - M. F. Hasler, May 19 2023

Examples

			57.28996...
		

Crossrefs

Cf. A073449, A019899-A019986 (same for 1, ..., 88 degrees).

Programs

Formula

Equals (Sum_{k=1..90} 2*k*sin(2*k)) / 90, with k in degrees (link USAMO 1996). - Bernard Schott, Apr 30 2022
A largest of the 24 real-valued roots of 1 -48*x +x^24 -564*x^22 +21186*x^20 -269412*x^18 +1470447*x^16 -3923304*x^14 +5407388*x^12 -3923304*x^10 +1470447*x^8- 269412*x^6 +21186*x^4 -564*x^2 -48*x^23 +1456*x^21 -12432*x^19 +17424*x^17 +45344*x^15 -51744*x^13 -51744*x^11 +45344*x^9 +17424*x^7 -12432*x^5 +1456*x^3 =0.- R. J. Mathar, Aug 29 2025

Extensions

Edited by N. J. A. Sloane, Aug 19 2008 at the suggestion of R. J. Mathar

A370189 Imaginary part of (1 + n*i)^n, where i is the imaginary unit.

Original entry on oeis.org

0, 1, 4, -18, -240, 1900, 42372, -482552, -14970816, 222612624, 8825080100, -161981127968, -7809130867824, 170561613679808, 9678967816041188, -245159013138710400, -16000787866533953280, 461102348510408544512, 34017524842099233036996, -1098983344602124698522112, -90417110945911655996319600
Offset: 0

Views

Author

Hugo Pfoertner, Feb 14 2024

Keywords

Comments

The ratio a(n)/A121626(n) converges to c for odd n and to -1/c for even n for n -> oo with c = 0.6420926... (= cot(1) (A073449) from Moritz Firsching, Feb 14 2024). See linked plots.

Crossrefs

Cf. A121626 (real part), A115415, A115416.
Cf. A073449.

Programs

  • Mathematica
    Array[Im[(1+#*I)^#] &, 25, 0] (* Paolo Xausa, Feb 19 2024 *)
  • PARI
    a370189(n) = imag((1+I*n)^n)
    
  • Python
    from math import comb
    def A370189(n): return sum(comb(n,j)*n**j*(-1 if j-1&2 else 1) for j in range(1,n+1,2)) # Chai Wah Wu, Feb 15 2024

Formula

a(n) = Sum_{j=0..floor((n-1)/2)} binomial(n,2*j+1)*n^(2*j+1)*(-1)^j. - Chai Wah Wu, Feb 15 2024

A113815 Decimal expansion of (cotangent of 1 degree)^(1/5).

Original entry on oeis.org

2, 2, 4, 7, 0, 6, 5, 3, 6, 7, 3, 7, 9, 4, 0, 5, 1, 4, 4, 5, 3, 0, 1, 3, 1, 6, 7, 1, 5, 0, 5, 6, 3, 0, 7, 1, 5, 8, 3, 3, 4, 9, 6, 4, 0, 1, 1, 3, 4, 0, 0, 3, 2, 3, 2, 9, 6, 2, 3, 9, 5, 8, 6, 8, 1, 5, 4, 3, 6, 2, 5, 5, 6, 7, 5, 6, 5, 0, 5, 4, 7, 5, 4, 1, 7, 8, 7, 7, 8, 1, 4, 0, 9, 8, 5, 1, 0, 7, 8, 9, 9, 9, 0, 1, 2
Offset: 1

Views

Author

Mohammad K. Azarian, Jan 22 2006

Keywords

Examples

			Equals (cot(Pi/180))^(1/5) = 2.247065367379405144530132....
		

Crossrefs

Programs

  • Mathematica
    RealDigits[(Cot[Pi/180])^(1/5), 10, 50][[1]] (* G. C. Greubel, Jun 08 2017 *)
    RealDigits[Surd[Cot[1 Degree],5],10,120][[1]] (* Harvey P. Dale, Mar 09 2019 *)
  • PARI
    (1/tan(Pi/180))^(1/5) \\ G. C. Greubel, Jun 08 2017

A280094 Pierce Expansion of cot(1).

Original entry on oeis.org

1, 2, 3, 6, 8, 12, 13, 15, 17, 19, 1063, 1155, 2574, 2662, 3595, 3723, 4370, 21530, 28927, 32662, 73255, 92895, 5133189, 13626701, 17852908, 392678721, 715595109, 3993107840, 39941257169, 43578446054, 1686996293054, 4244526044926, 78467829696572, 111290944386765
Offset: 0

Views

Author

G. C. Greubel, Dec 25 2016

Keywords

Crossrefs

Cf. A073449 (cot(1)).

Programs

  • Mathematica
    PierceExp[A_, n_] := Join[Array[1 &, Floor[A]], First@Transpose@ NestList[{Floor[1/Expand[1 - #[[1]] #[[2]]]], Expand[1 - #[[1]] #[[2]]]} &, {Floor[1/(A - Floor[A])], A - Floor[A]}, n - 1]]; PierceExp[N[Cot[1] , 7!], 50]

A113794 Decimal expansion of (cotangent of 1 degree)^2.

Original entry on oeis.org

3, 2, 8, 2, 1, 3, 9, 7, 0, 3, 6, 5, 3, 8, 8, 7, 0, 7, 9, 2, 9, 0, 6, 5, 6, 3, 6, 8, 9, 3, 2, 9, 6, 4, 6, 9, 9, 1, 3, 5, 7, 8, 9, 9, 4, 2, 6, 9, 5, 3, 1, 6, 1, 3, 1, 2, 5, 8, 9, 5, 3, 3, 2, 9, 7, 5, 4, 5, 3, 6, 0, 1, 6, 6, 7, 1, 2, 0, 0, 9, 7, 4, 3, 4, 1, 8, 2, 5, 1, 5, 5, 5, 5, 3, 3, 8, 7, 3, 9, 6, 2, 1, 9, 4, 7
Offset: 4

Views

Author

Mohammad K. Azarian, Jan 21 2006

Keywords

Examples

			3282.139703... = 1/A111493.
		

Crossrefs

Programs

  • Maple
    cot(Pi/180)^2; evalf(%) ; # R. J. Mathar, Apr 03 2011
  • Mathematica
    RealDigits[Cot[1 Degree]^2,10,120][[1]] (* Harvey P. Dale, Mar 12 2023 *)

Extensions

Offset changed by Mohammad K. Azarian, Dec 13 2008

A113809 Decimal expansion of (cotangent of 1 degree)^3.

Original entry on oeis.org

1, 8, 8, 0, 3, 3, 6, 5, 7, 6, 8, 9, 1, 2, 3, 2, 9, 9, 4, 9, 0, 9, 6, 5, 0, 1, 6, 0, 2, 0, 2, 3, 9, 0, 5, 7, 8, 0, 0, 8, 4, 5, 2, 8, 4, 5, 8, 4, 4, 3, 7, 9, 3, 3, 7, 3, 8, 3, 2, 6, 0, 1, 0, 6, 5, 0, 6, 1, 7, 5, 9, 5, 5, 0, 5, 4, 5, 2, 0, 5, 1, 9, 8, 2, 2, 5, 3, 4, 0, 3, 5, 5, 8, 7, 9, 4, 4, 2, 4, 8, 9, 0, 2, 5, 1
Offset: 6

Views

Author

Mohammad K. Azarian, Jan 22 2006

Keywords

Examples

			188033.65768912...
		

Crossrefs

Programs

  • Maple
    evalf(cot(Pi/180)^3) ; # R. J. Mathar, Oct 03 2011
  • Mathematica
    RealDigits[Cot[1 Degree]^3,10,120][[1]] (* Harvey P. Dale, Nov 06 2019 *)

Extensions

Offset changed by Mohammad K. Azarian, Dec 13 2008

A113810 Decimal expansion of (cotangent of 1 degree)^4.

Original entry on oeis.org

1, 0, 7, 7, 2, 4, 4, 1, 0, 3, 4, 3, 0, 1, 2, 2, 5, 6, 9, 7, 8, 6, 4, 7, 1, 3, 0, 0, 3, 2, 7, 2, 6, 6, 3, 4, 9, 8, 2, 9, 5, 1, 7, 8, 3, 1, 1, 0, 3, 4, 1, 1, 0, 5, 1, 9, 7, 7, 2, 4, 4, 1, 5, 1, 6, 6, 6, 6, 8, 5, 5, 4, 6, 1, 7, 9, 4, 5, 1, 3, 8, 3, 4, 4, 1, 4, 8, 5, 5, 6, 3, 7, 8, 3, 5, 2, 6, 1, 5, 8, 5, 3, 3, 2, 7
Offset: 8

Views

Author

Mohammad K. Azarian, Jan 22 2006

Keywords

Examples

			0.10772441034301..*10^8.
		

Crossrefs

Extensions

Offset corrected by Mohammad K. Azarian, Dec 13 2008
Showing 1-10 of 18 results. Next