cp's OEIS Frontend

This is a front-end for the Online Encyclopedia of Integer Sequences, made by Christian Perfect. The idea is to provide OEIS entries in non-ancient HTML, and then to think about how they're presented visually. The source code is on GitHub.

User: Moritz Firsching

Moritz Firsching's wiki page.

Moritz Firsching has authored 3 sequences.

A263183 Decimal expansion of 1/log_2(r), where r is Otter's rooted tree constant.

Original entry on oeis.org

6, 3, 9, 5, 7, 7, 6, 8, 9, 9, 9, 4, 7, 2, 0, 1, 3, 3, 1, 1, 2, 8, 9, 9, 8, 7, 0, 5, 6, 5, 7, 3, 1, 3, 8, 4, 1, 1, 5, 2, 7, 6, 4, 8, 1, 9, 1, 4, 4, 1, 9, 6, 2, 2, 5, 8, 2, 7, 4, 2, 3, 5, 5, 8, 3, 6, 1, 3, 2, 3, 5, 3, 1, 8, 5, 8, 8, 1, 6, 7, 7, 3, 6, 8, 6, 9, 5, 7, 0, 5, 0, 8, 4, 0, 1, 7, 9, 5, 9, 1
Offset: 0

Author

Moritz Firsching, Oct 11 2015

Keywords

Comments

The article "Beweisbar oder nicht? Die Grenzzahl 0,639578175..." (linked below) has a wrong value (already in the title).

Examples

			0.63957768999472013311289987056573138411527648191441962258274235583613235318588...
		

Crossrefs

Cf. A051491.

Formula

Equals 1/log_2(A051491).

A262322 The number of 4-connected triangulations of the triangle with n inner vertices.

Original entry on oeis.org

1, 0, 0, 1, 1, 3, 13, 47, 217, 1041, 5288, 27844, 150608, 831229
Offset: 0

Author

Moritz Firsching, Sep 18 2015

Keywords

Comments

Also the number of 4-connected simplicial polyhedra with n nodes with one marked face.
Values obtained by generating 4-connected simplicial polyhedra with plantri, marking each face in the polyhedron, and then sorting out isomorphic ones.

Crossrefs

A260940 a(n) is the smallest index j>n such that g(j)=0 for the sequence g defined (for indices > n) by g(n+1)=n and g(i) = g(i-1) - gcd(i,g(i-1)).

Original entry on oeis.org

3, 5, 7, 7, 11, 13, 13, 17, 19, 19, 23, 19, 21, 29, 31, 31, 31, 37, 37, 41, 43, 43, 47, 43, 43, 53, 43, 41, 59, 61, 61, 61, 67, 67, 71, 73, 73, 71, 79, 79, 83, 79, 79, 89, 79, 79, 79, 97, 97, 101, 103, 103, 107, 109, 109, 113, 109, 109, 113, 109
Offset: 1

Author

Moritz Firsching, Aug 04 2015

Keywords

Comments

a(n) is prime for all n<=10^10 except a(13)=21.
a(n) <= 2n + 1.
a(n) = 2n + 1 if and only if 2n + 1 is prime.
a(n) = 2n - 1 if and only if 2n - 1 is a prime and 2n - 1 = 1 mod 6.
a(n) = 2n - 3 if and only if 2n - 3 is a prime and 2n - 3 = 1 mod 30.

Crossrefs

A186253(n) is a^n(2) where a^n denotes the n-th composition.

Programs

  • PARI
    a(last_a) = {
      local(A=last_a,B=last_a,C=2*last_a+1);
      while(A>0,
        D=divisors(C);
        k1=10*D[2];
        for(j=2,matsize(D)[2],d=D[j];k=((A+1-B+d)/2)%d;
          if(k==0,k=d); if(k<=k1,k1=k;d1=d));
        if(k1-1+d1==A,B=B+1);
        A = max(A-(k1-1)-d1,0);
        B = B + k1;
        C = C - (d1 - 1);
      );
      return(B);
    }
    a(n)={
    my(A=n, B=n, C=2*n+1);
    while(A>0,
    my(k1=oo,d1);
    fordiv(C,d,
    if(d==1,next);
    my(k=((A+1-B+d)/2)%d);
    if(k==0, k=d);
    if(k<=k1, k1=k; d1=d)
    );
    A -= k1 - 1 + d1;
    B += k1 + (A==0);
    C -= d1 - 1;
    );
    B;
    } \\ Charles R Greathouse IV, Nov 04 2015
  • Sage
    def a(n):
        g=n
        n+=1
        while(g!=0):
            g=g-gcd(n,g)
            n+=1
        return n