cp's OEIS Frontend

This is a front-end for the Online Encyclopedia of Integer Sequences, made by Christian Perfect. The idea is to provide OEIS entries in non-ancient HTML, and then to think about how they're presented visually. The source code is on GitHub.

Showing 1-3 of 3 results.

A049469 Decimal expansion of sin(1).

Original entry on oeis.org

8, 4, 1, 4, 7, 0, 9, 8, 4, 8, 0, 7, 8, 9, 6, 5, 0, 6, 6, 5, 2, 5, 0, 2, 3, 2, 1, 6, 3, 0, 2, 9, 8, 9, 9, 9, 6, 2, 2, 5, 6, 3, 0, 6, 0, 7, 9, 8, 3, 7, 1, 0, 6, 5, 6, 7, 2, 7, 5, 1, 7, 0, 9, 9, 9, 1, 9, 1, 0, 4, 0, 4, 3, 9, 1, 2, 3, 9, 6, 6, 8, 9, 4, 8, 6, 3, 9, 7, 4, 3, 5, 4, 3, 0, 5, 2, 6, 9, 5
Offset: 0

Views

Author

Albert du Toit (dutwa(AT)intekom.co.za), N. J. A. Sloane

Keywords

Comments

Also, decimal expansion of the imaginary part of e^i. - Bruno Berselli, Feb 08 2013
By the Lindemann-Weierstrass theorem, this constant is transcendental. - Charles R Greathouse IV, May 12 2019

Examples

			0.8414709848078965...
		

Crossrefs

Cf. A049470 (real part of e^i), A211883 (real part of -(i^e)), A211884 (imaginary part of -(i^e)). - Bruno Berselli, Feb 08 2013
Cf. A074790.

Programs

Formula

Continued fraction representation: sin(1) = 1 - 1/(6 + 6/(19 + 20/(41 + ... + (2*n - 1)*(2*n - 2)/((4*n^2 + 2*n - 1) + ... )))). See A074790 for details. - Peter Bala, Jan 30 2015
Equals Sum_{k > 0} (-1)^(k-1)/((2k-1)!) = Sum_{k > 0} (-1)^(k-1)/A009445(k-1) [See Gradshteyn and Ryzhik]. - A.H.M. Smeets, Sep 22 2018
Equals Product{k>=1} cos(1/2^k). - Amiram Eldar, Aug 20 2020
Equals Integral_{x=-1..1} cos(x)/[exp(1/x)+1] dx. [Nahin]. - R. J. Mathar, May 16 2024

A051397 a(n) = (2*n-2)*(2*n-1)*a(n-1)+1.

Original entry on oeis.org

0, 1, 7, 141, 5923, 426457, 46910271, 7318002277, 1536780478171, 418004290062513, 142957467201379447, 60042136224579367741, 30381320929637160076947, 18228792557782296046168201, 12796612375563171824410077103, 10390849248957295521420982607637
Offset: 0

Views

Author

Keywords

Crossrefs

Bisection of abs(A009628). Also bisection of A087208 and of A186763. Cf. A073742, A074790, A275651.

Programs

  • Mathematica
    nxt[{n_,a_}]:={n+1,(2(n+1)-2)(2(n+1)-1)a+1}; Transpose[NestList[nxt,{0,0},20]][[2]] (* Harvey P. Dale, Jun 13 2016 *)

Formula

a(n) = Sum_{k=0..n-1} (2*n-1)!/(2*k+1)!. a(n) = floor((2*n-1)!*sinh(1)). - Vladeta Jovovic, Aug 10 2002
Conjecture: a(n) +(-4*n^2+6*n-3)*a(n-1) +2*(2*n-3)*(n-2)*a(n-2)=0. - R. J. Mathar, Jan 31 2014
From Peter Bala, Sep 02 2016: (Start)
G.f. sinh(x)/(1 - x^2) = x + 7*x^3/3! + 141*x^5/5! + 5923*x^7/7! + ....
Mathar's conjectured recurrence a(n) = (4*n^2 - 6*n + 3)*a(n-1) - (2*n - 3)*(2*n - 4)*a(n-2) follows easily from the defining recurrence. The sequence b(n) := (2*n - 1)! also satisfies Mathar's recurrence but with b(1) = 1, b(2) = 6. This leads to the continued fraction representation a(n) = (2*n - 1)!*(1 + 1/(6 - 6/(21 - 20/(43 - ... - (2*n - 3)*(2*n - 4)/(4*n^2 - 6*n + 3) )))) for n >= 3. Taking the limit gives the continued fraction representation sinh(1) = A073742 = 1 + 1/(6 - 6/(21 - 20/(43 - ... - (2*n - 3)*(2*n - 4)/((4*n^2 - 6*n + 3) - ... )))). (End)

A275651 a(n) = (2*n)!*Sum_{k = 0..n} (-1)^k/(2*k)!.

Original entry on oeis.org

1, 1, 13, 389, 21785, 1960649, 258805669, 47102631757, 11304631621681, 3459217276234385, 1314502564969066301, 607300185015708631061, 335229702128671164345673
Offset: 0

Views

Author

Peter Bala, Sep 02 2016

Keywords

Comments

Compare with the derangement numbers A000166(n) := n!*sum_{k = 0..n} (-1)^k/k! and also A074790.

Crossrefs

Programs

  • Maple
    A275651 := proc(n) option remember; if (n = 0) then 1 else 2*n*(2*n - 1)*A275651(n-1)+(-1)^n end if; end proc:
    seq(A275651(n), n = 0..20);
  • Mathematica
    Table[(2 n)!*Sum[(-1)^k/(2 k)!, {k, 0, n}], {n, 12}] (* Michael De Vlieger, Sep 04 2016 *)

Formula

a(n) ~ (2*n)!*cos(1).
E.g.f. for the aerated sequence: cos(x)/(1 - x^2) = 1 + x^2/2! + 13*x^4/4! + 389*x^6/6! + ....
Recurrence equations:
a(n) = 2*n*(2*n - 1)*a(n-1) + (-1)^n with a(0) = 1.
a(n) = (4*n^2 - 2*n - 1)*a(n - 1) + (2*n - 2)*(2*n - 3)*a(n - 2) with a(0) = 1, a(1) = 1.
The latter recurrence is also satisfied by the sequence b(n) := (2*n)! with b(0) = 1, b(1) = 2. This leads to the continued fraction representation a(n) = (2*n )!*( 1/(1 + 1/(1 + 2/(11 + 12/(29 + ... + (2*n - 2)*(2*n - 3)/(4*n^2 - 2*n - 1) )))) ) for n >= 3. Taking the limit gives the continued fraction representation cos(1) = A049470 = 1/(1 + 1/(1 + 2/(11 + 12/(29 + ... + (2*n - 2)*(2*n - 3)/((4*n^2 - 2*n - 1) + ... ))))). Cf. A073743.
Showing 1-3 of 3 results.