cp's OEIS Frontend

This is a front-end for the Online Encyclopedia of Integer Sequences, made by Christian Perfect. The idea is to provide OEIS entries in non-ancient HTML, and then to think about how they're presented visually. The source code is on GitHub.

Showing 1-3 of 3 results.

A049470 Decimal expansion of cos(1).

Original entry on oeis.org

5, 4, 0, 3, 0, 2, 3, 0, 5, 8, 6, 8, 1, 3, 9, 7, 1, 7, 4, 0, 0, 9, 3, 6, 6, 0, 7, 4, 4, 2, 9, 7, 6, 6, 0, 3, 7, 3, 2, 3, 1, 0, 4, 2, 0, 6, 1, 7, 9, 2, 2, 2, 2, 7, 6, 7, 0, 0, 9, 7, 2, 5, 5, 3, 8, 1, 1, 0, 0, 3, 9, 4, 7, 7, 4, 4, 7, 1, 7, 6, 4, 5, 1, 7, 9, 5, 1, 8, 5, 6, 0, 8, 7, 1, 8, 3, 0, 8, 9
Offset: 0

Views

Author

Albert du Toit (dutwa(AT)intekom.co.za), N. J. A. Sloane

Keywords

Comments

Also, decimal expansion of the real part of e^i. - Bruno Berselli, Feb 08 2013
By the Lindemann-Weierstrass theorem, this constant is transcendental. - Charles R Greathouse IV, May 13 2019

Examples

			0.5403023058681397...
		

Crossrefs

Cf. A049469 (imaginary part of e^i), A211883 (real part of -(i^e)), A211884 (imaginary part of -(i^e)). - Bruno Berselli, Feb 08 2013
Cf. A073743 ( cosh(1) ), A073448, A275651.

Programs

Formula

Continued fraction representation: cos(1) = 1/(1 + 1/(1 + 2/(11 + 12/(29 + ... + (2*n - 2)*(2*n - 3)/((4*n^2 - 2*n - 1) + ... ))))). See A275651 for proof. Cf. A073743. - Peter Bala, Sep 02 2016
Equals Sum_{k >= 0} (-1)^k/A010050(k), where A010050(k) = (2k)! [See Gradshteyn and Ryzhik]. - A.H.M. Smeets, Sep 22 2018
Equals 1/A073448. - Alois P. Heinz, Jan 23 2023
From Gerry Martens, May 04 2024: (Start)
Equals (4*(cos(1/4)^4 + sin(1/4)^4) - 3).
Equals (16*(cos(1/4)^6 + sin(1/4)^6) - 10)/6. (End)

A051396 a(n) = (2*n-2)*(2*n-3)*a(n-1)+1.

Original entry on oeis.org

0, 1, 3, 37, 1111, 62217, 5599531, 739138093, 134523132927, 32285551902481, 9879378882159187, 3754163975220491061, 1734423756551866870183, 957401913616630512341017, 622311243850809833021661051, 470467300351212233764375754557, 409306551305554643375006906464591
Offset: 0

Views

Author

Keywords

Comments

The sequence 1,0,3,0,37,... has e.g.f. cosh(x)/(1-x^2) with a(n) = Sum_{k=0..n} C(n,k)k!(1+(-1)^k)(1+(-1)^(n-k))/4. - Paul Barry, May 01 2005

Crossrefs

Bisection of abs(A009179(n)). Cf. A049470 (cos(1)), A073743 (cosh(1)), A275651.

Programs

  • Maple
    A051396 := proc(n) option remember; if n <= 1 then n else (2*n-2)*(2*n-3)*A051396(n-1)+1; fi; end;
  • Mathematica
    a[0] = 0; a[n_] := a[n] = (2*n-2)*(2*n-3)*a[n-1] + 1;
    Table[a[n], {n, 0, 16}] (* Jean-François Alcover, Dec 11 2017 *)
    nxt[{n_,a_}]:={n+1,a(4n^2-2n)+1}; NestList[nxt,{0,0},20][[;;,2]] (* Harvey P. Dale, Sep 26 2023 *)

Formula

a(n) = Sum_{k=0..n-1} (2*n-2)!/(2*k)! = floor((2*n-2)!*cosh(1)), n>=1. - Vladeta Jovovic, Aug 10 2002
a(n+1) = Sum_{k=0..2n}, C(2n, k)*k!*(1+(-1)^k)^2. - Paul Barry, May 01 2005
a(n) +(-4*n^2+10*n-7)*a(n-1) +2*(n-2)*(2*n-5)*a(n-2)=0. - R. J. Mathar, Nov 26 2012
From Peter Bala, Sep 05 2016: (Start)
The sequence b(n) := (2*n - 2)! also satisfies Mathar's recurrence with b(1) = 1, b(2) = 2. This leads to the continued fraction representation a(n) = (2*n - 2)!*(1 + 1/(2 - 2/(13 - 12/(31 - ... - (2*n - 4)*(2*n - 5)/(4*n^2 - 10*n + 7) )))) for n >= 3. Taking the limit gives the continued fraction representation cosh(1) = A073743 = 1 + 1/(2 - 2/(13 - 12/(31 - ... - (2*n - 4)*(2*n - 5)/((4*n^2 - 10*n + 7) - ... )))). (End)

A051397 a(n) = (2*n-2)*(2*n-1)*a(n-1)+1.

Original entry on oeis.org

0, 1, 7, 141, 5923, 426457, 46910271, 7318002277, 1536780478171, 418004290062513, 142957467201379447, 60042136224579367741, 30381320929637160076947, 18228792557782296046168201, 12796612375563171824410077103, 10390849248957295521420982607637
Offset: 0

Views

Author

Keywords

Crossrefs

Bisection of abs(A009628). Also bisection of A087208 and of A186763. Cf. A073742, A074790, A275651.

Programs

  • Mathematica
    nxt[{n_,a_}]:={n+1,(2(n+1)-2)(2(n+1)-1)a+1}; Transpose[NestList[nxt,{0,0},20]][[2]] (* Harvey P. Dale, Jun 13 2016 *)

Formula

a(n) = Sum_{k=0..n-1} (2*n-1)!/(2*k+1)!. a(n) = floor((2*n-1)!*sinh(1)). - Vladeta Jovovic, Aug 10 2002
Conjecture: a(n) +(-4*n^2+6*n-3)*a(n-1) +2*(2*n-3)*(n-2)*a(n-2)=0. - R. J. Mathar, Jan 31 2014
From Peter Bala, Sep 02 2016: (Start)
G.f. sinh(x)/(1 - x^2) = x + 7*x^3/3! + 141*x^5/5! + 5923*x^7/7! + ....
Mathar's conjectured recurrence a(n) = (4*n^2 - 6*n + 3)*a(n-1) - (2*n - 3)*(2*n - 4)*a(n-2) follows easily from the defining recurrence. The sequence b(n) := (2*n - 1)! also satisfies Mathar's recurrence but with b(1) = 1, b(2) = 6. This leads to the continued fraction representation a(n) = (2*n - 1)!*(1 + 1/(6 - 6/(21 - 20/(43 - ... - (2*n - 3)*(2*n - 4)/(4*n^2 - 6*n + 3) )))) for n >= 3. Taking the limit gives the continued fraction representation sinh(1) = A073742 = 1 + 1/(6 - 6/(21 - 20/(43 - ... - (2*n - 3)*(2*n - 4)/((4*n^2 - 6*n + 3) - ... )))). (End)
Showing 1-3 of 3 results.