A056158 Equivalent of the Kurepa hypothesis for left factorial.
Links
- James Spahlinger, Table of n, a(n) for n = 3..100
- Romeo Mestrovic, Variations of Kurepa's left factorial hypothesis, arXiv:1312.7037 [math.NT], 2013.
- Romeo Mestrovic, The Kurepa-Vandermonde matrices arising from Kurepa's left factorial hypothesis, Filomat 29:10 (2015), 2207-2215; DOI 10.2298/FIL1510207M.
Programs
-
Magma
[n eq 3 select -4 else -(n-3)*Self(n-3)-2*(n-1): n in [3..30]]; // Vincenzo Librandi, Feb 22 2016
-
Mathematica
a[3] = -4; a[n_]:= -(n-3)*a[n-1] - 2*(n-1); Array[a, 30, 3] (* James Spahlinger, Feb 20 2016 *) Drop[CoefficientList[Series[2*x^2*(Exp[1/x -1]*ExpIntegralEi[(x-1)/x] + x/(x-1)), {x,0,15}, Assumptions -> x > 0], x],3] (* G. C. Greubel, Mar 29 2019 *)
-
PARI
m=30; v=concat([-4], vector(m-1)); for(n=2, m, v[n]=-(n-1)*v[n-1] -2*(n+1)); v \\ G. C. Greubel, Mar 29 2019
-
Sage
@CachedFunction def Self(n): if n == 3 : return -4 return -(n-3)*Self(n-1) - 2*(n-1) [Self(n) for n in (3..30)] # G. C. Greubel, Mar 29 2019
Comments