cp's OEIS Frontend

This is a front-end for the Online Encyclopedia of Integer Sequences, made by Christian Perfect. The idea is to provide OEIS entries in non-ancient HTML, and then to think about how they're presented visually. The source code is on GitHub.

User: Aleksandar Petojevic

Aleksandar Petojevic's wiki page.

Aleksandar Petojevic has authored 17 sequences. Here are the ten most recent ones:

A056158 Equivalent of the Kurepa hypothesis for left factorial.

Original entry on oeis.org

-4, -2, -4, 2, -20, 86, -532, 3706, -29668, 266990, -2669924, 29369138, -352429684, 4581585862, -64142202100, 962133031466, -15394128503492, 261700184559326, -4710603322067908, 89501463119290210, -1790029262385804244
Offset: 3

Author

Aleksandar Petojevic, Jul 31 2000

Keywords

Comments

For a prime p > 2 we have !p == -a(p) mod p, where the left factorial !n = Sum_{k=0..n-1} k! (A003422).

Programs

  • Magma
    [n eq 3 select -4 else -(n-3)*Self(n-3)-2*(n-1): n in [3..30]]; // Vincenzo Librandi, Feb 22 2016
    
  • Mathematica
    a[3] = -4; a[n_]:= -(n-3)*a[n-1] - 2*(n-1); Array[a, 30, 3] (* James Spahlinger, Feb 20 2016 *)
    Drop[CoefficientList[Series[2*x^2*(Exp[1/x -1]*ExpIntegralEi[(x-1)/x] + x/(x-1)), {x,0,15}, Assumptions -> x > 0], x],3] (* G. C. Greubel, Mar 29 2019 *)
  • PARI
    m=30; v=concat([-4], vector(m-1)); for(n=2, m, v[n]=-(n-1)*v[n-1] -2*(n+1)); v \\ G. C. Greubel, Mar 29 2019
    
  • Sage
    @CachedFunction
    def Self(n):
       if n == 3 : return -4
       return -(n-3)*Self(n-1) - 2*(n-1)
    [Self(n) for n in (3..30)] # G. C. Greubel, Mar 29 2019

Formula

a(3) = -4, a(n) = -(n-3)*a(n-1) - 2*(n-1).
a(n) = 2*(-1)^(n-1)*(n-3)!*Sum_{k=0..n-3} frac((k+2)*(-1)^(k+1))*k!.
Conjecture: a(n) + (n-5)*a(n-1) + (-2*n+9)*a(n-2) + (n-5)*a(n-3) = 0. - R. J. Mathar, Jan 31 2014
a(n) ~ (-1)^n * 2 * exp(-1) * (n-3)!. - Vaclav Kotesovec, Jan 05 2019
G.f.: 2*x^2*(exp(-1+1/x) * Exponential-Integral((x-1)/x) + x/(x-1)). - G. C. Greubel, Mar 29 2019

Extensions

More terms from Larry Reeves (larryr(AT)acm.org), Oct 03 2000

A056953 Denominators of continued fraction for alternating factorial.

Original entry on oeis.org

1, 1, 2, 3, 7, 13, 34, 73, 209, 501, 1546, 4051, 13327, 37633, 130922, 394353, 1441729, 4596553, 17572114, 58941091, 234662231, 824073141, 3405357682, 12470162233, 53334454417, 202976401213, 896324308634, 3535017524403, 16083557845279, 65573803186921
Offset: 0

Author

Aleksandar Petojevic, Sep 05 2000

Keywords

Comments

Starting (1, 2, 3, ...) with offset 0 = eigensequence of an infinite lower triangular matrix with 1's in the main diagonal and the natural numbers repeated in the subdiagonal. - Gary W. Adamson, Feb 14 2011
a(n) is the number of involutions of [n] such that every 2-cycle contains one odd and one even element; a(4) = 7: 1234, 1243, 1324, 2134, 2143, 4231, 4321. - Alois P. Heinz, Feb 14 2013

Crossrefs

Bisections are A000262 and A002720.
Cf. A124428, diagonals of A088699.

Programs

  • Magma
    [(&+[Factorial(k)*Binomial(Floor(n/2),k)*Binomial(Floor((n+1)/2),k): k in [0..Floor(n/2)]]): n in [0..30]]; // G. C. Greubel, May 16 2018
  • Maple
    a:= proc(n) option remember; `if`(n<4, [1, 1, 2, 3][n+1],
          ((4*n-2)*a(n-2) +2*a(n-3) -(n-2)*(n-3)*a(n-4)) /4)
        end:
    seq(a(n), n=0..30);  # Alois P. Heinz, Feb 14 2013
  • Mathematica
    Table[Sum[k!*Binomial[Floor[n/2], k]*Binomial[Floor[(n+1)/2], k] , {k,0,Floor[n/2]}], {n,0,30}] (* G. C. Greubel, May 16 2018 *)
  • PARI
    a(n)=sum(k=0,n\2,k!*binomial(n\2,k)*binomial((n+1)\2,k)) \\ Paul D. Hanna, Oct 31 2006
    

Formula

a(0)=1; a(1)=1; a(n) = a(n-1) + n*a(n-2)/2.
a(n) = Sum_{k=0..[n/2]} k!*C([n/2],k)*C([(n+1)/2],k). - Paul D. Hanna, Oct 31 2006
a(n) ~ n^(n/2 + 1/4) / (2^(n/2 + 3/4) * exp(n/2 - sqrt(2*n) + 1/2)) * (1 + (25 + 6*(-1)^n)/(24*sqrt(2*n)) + (397 + 156*(-1)^n)/(2304*n)). - Vaclav Kotesovec, Feb 22 2019

A056889 Numerators of continued fraction for left factorial.

Original entry on oeis.org

0, 1, 1, 0, 1, -1, -2, 1, 2, -1, -3, 2, 9, -7, -40, 33, 224, -191, -1495, 1304, 11545, -10241, -101106, 90865, 989274, -898409, -10690043, 9791634, 126392833, -116601199, -1622625152, 1506023953, 22473758096, -20967734143, -333977722335, 313009988192, 5300202065121, -4987192076929
Offset: 0

Author

Aleksandar Petojevic, Sep 05 2000

Keywords

Crossrefs

Programs

  • GAP
    a:= function(n)
        if n<2 then return n;
        elif (n mod 2)=0 then return (n/2)*a(n-1) +a(n-2);
        else return -a(n-1) +a(n-2);
        fi; end;
    List([0..20], n-> a(n) ); # G. C. Greubel, Dec 05 2019
  • Maple
    a:= proc(n) option remember;
          if n<2 then n
        elif (n mod 2)=0 then (n/2)*a(n-1) +a(n-2)
        else -a(n-1) +a(n-2)
          fi; end:
    seq(a(n), n=0..40); # G. C. Greubel, Dec 05 2019
  • Mathematica
    a[n_]:= a[n]= If[n<2, n, If[EvenQ[n], (n/2)*a[n-1] +a[n-2], -a[n-1] +a[n-2]]]; Table[a[n], {n,0,40}] (* G. C. Greubel, Dec 05 2019 *)
  • PARI
    a(n) = if(n<2, n, if(Mod(n,2)==0, (n/2)*a(n-1) +a(n-2), -a(n-1) +a(n-2) )); \\ G. C. Greubel, Dec 05 2019
    
  • Sage
    @CachedFunction
    def a(n):
        if (n<2): return n
        elif (mod(n,2) ==0): return (n/2)*a(n-1) +a(n-2)
        else: return -a(n-1) +a(n-2)
    [a(n) for n in (0..40)] # G. C. Greubel, Dec 05 2019
    

Formula

a(0) = 0; a(1) = 1; a(2*n) = n*a(2*n-1) + a(2*n-2); a(2*n+1) = -a(2*n) + a(2*n-1).
From Mark van Hoeij, Jul 15 2022: (Start)
a(2*n+1) = -(-1)^n * A058797(n-2).
a(2*n) = (-1)^n * (A058797(n-2) + A058797(n-3)). (End)

Extensions

More terms from James Sellers, Sep 06 2000 and from Larry Reeves (larryr(AT)acm.org), Sep 07 2000

A056890 Denominators of continued fraction for left factorial.

Original entry on oeis.org

1, -1, 0, -1, -2, 1, 1, 0, 1, -1, -4, 3, 14, -11, -63, 52, 353, -301, -2356, 2055, 18194, -16139, -159335, 143196, 1559017, -1415821, -16846656, 15430835, 199185034, -183754199, -2557127951, 2373373752, 35416852081, -33043478329, -526322279512, 493278801183, 8352696141782
Offset: 0

Author

Aleksandar Petojevic, Sep 05 2000

Keywords

Crossrefs

Cf. A056889.

Programs

  • GAP
    a:= function(n)
        if n<2 then return (-1)^n;
        elif (n mod 2)=0 then return (n/2)*a(n-1) +a(n-2);
        else return -a(n-1) +a(n-2);
        fi; end;
    List([0..20], n-> a(n) ); # G. C. Greubel, Dec 05 2019
  • Maple
    a:= proc(n) option remember;
          if n<2 then (-1)^n
        elif (n mod 2)=0 then (n/2)*a(n-1) +a(n-2)
        else -a(n-1) +a(n-2)
          fi; end:
    seq(a(n), n=0..40); # G. C. Greubel, Dec 05 2019
  • Mathematica
    a[n_]:= a[n]= If[n<2, (-1)^n, If[EvenQ[n], (n/2)*a[n-1] +a[n-2], -a[n-1] +a[n-2]]]; Table[a[n], {n,0,40}] (* G. C. Greubel, Dec 05 2019 *)
  • PARI
    a(n) = if(n<2, (-1)^n, if(Mod(n,2)==0, (n/2)*a(n-1) +a(n-2), -a(n-1) +a(n-2) )); \\ G. C. Greubel, Dec 05 2019
    
  • Sage
    @CachedFunction
    def a(n):
        if (n<2): return (-1)^n
        elif (mod(n,2) ==0): return (n/2)*a(n-1) +a(n-2)
        else: return -a(n-1) +a(n-2)
    [a(n) for n in (0..40)] # G. C. Greubel, Dec 05 2019
    

Formula

a(0)=1; a(1)=-1; a(2*n)=n*a(2*n-1)+a(2*n-2); a(2*n+1)= - a(2*n)+a(2*n-1)

Extensions

More terms from James Sellers, Sep 06 2000 and from Larry Reeves (larryr(AT)acm.org), Sep 07 2000

A056919 Numerators of continued fraction for left factorial.

Original entry on oeis.org

0, 1, 1, 0, -2, -2, 4, 10, -6, -46, -16, 214, 310, -974, -3144, 3674, 28826, -566, -260000, -254906, 2345094, 4894154, -20901880, -74737574, 176084986, 1072935874, -1216168944, -15164335306, 1862029910, 214162724194, 186232275544, -3026208587366, -6005924996070, 42413412401786
Offset: 0

Author

Aleksandar Petojevic, Sep 05 2000

Keywords

Formula

a(0)=0; a(1)=1; a(n) = a(n-1) - floor(n/2)*a(n-2).

Extensions

More terms from James Sellers, Sep 06 2000

A056920 Denominators of continued fraction for left factorial.

Original entry on oeis.org

1, 1, 0, -1, -1, 1, 4, 1, -15, -19, 56, 151, -185, -1091, 204, 7841, 6209, -56519, -112400, 396271, 1520271, -2442439, -19165420, 7701409, 237686449, 145269541, -2944654296, -4833158329, 36392001815, 104056218421, -441823808804, -2002667085119, 5066513855745, 37109187217649
Offset: 0

Author

Aleksandar Petojevic, Sep 05 2000

Keywords

Programs

  • GAP
    a:= function(n)
        if n<2 then return 1;
        else return a(n-1) - Int(n/2)*a(n-2);
        fi; end;
    List([0..40], n-> a(n) ); # G. C. Greubel, Dec 05 2019
  • Magma
    function a(n)
      if n lt 2 then return 1;
      else return a(n-1) - Floor(n/2)*a(n-2);
      end if; return a; end function;
    [a(n): n in [0..40]]; // G. C. Greubel, Dec 05 2019
    
  • Maple
    a:= proc(n) option remember;
       if n<2 then 1
       else a(n-1) - floor(n/2)*a(n-2)
       fi; end:
    seq(a(n), n=0..40); # G. C. Greubel, Dec 05 2019
  • Mathematica
    a[n_]:= a[n]= If[n<2, 1, a[n-1] -Floor[n/2]*a[n-2]]; Table[a[n], {n,0,40}] (* G. C. Greubel, Dec 05 2019 *)
  • PARI
    a(n) = if(n<2, n, a(n-1) - (n\2)*a(n-2) ); \\ G. C. Greubel, Dec 05 2019
    
  • Sage
    @CachedFunction
    def a(n):
        if (n<2): return 1
        else: return a(n-1) - floor(n/2)*a(n-2)
    [a(n) for n in (0..40)] # G. C. Greubel, Dec 05 2019
    

Formula

a(0)=1, a(1)=1, a(n) = a(n-1) - floor(n/2)*a(n-2).

Extensions

More terms from James Sellers, Sep 06 2000

A056921 a(0) = 0, a(1) = 1, a(2*n) = n*a(2*n-1) + a(2*n-2), a(2*n+1) = a(2*n) + a(2*n-1).

Original entry on oeis.org

0, 1, 1, 2, 5, 7, 26, 33, 158, 191, 1113, 1304, 8937, 10241, 80624, 90865, 807544, 898409, 8893225, 9791634, 106809565, 116601199, 1389422754, 1506023953, 19461710190, 20967734143, 292042254049, 313009988192, 4674182088737
Offset: 0

Author

Aleksandar Petojevic, Sep 05 2000

Keywords

Crossrefs

Cf. A058797.

Formula

Numerators of continued fraction for alternating factorial.

Extensions

More terms from James Sellers, Sep 07 2000

A056922 Denominators of continued fraction for alternating factorial.

Original entry on oeis.org

1, 1, 2, 3, 8, 11, 41, 52, 249, 301, 1754, 2055, 14084, 16139, 127057, 143196, 1272625, 1415821, 14015014, 15430835, 168323364, 183754199, 2189619553, 2373373752, 30670104577, 33043478329, 460235322854, 493278801183
Offset: 0

Author

Aleksandar Petojevic, Sep 05 2000

Keywords

Crossrefs

Cf. A058799, A056952 (numerators).

Formula

a(0)=1; a(1)=1; a(2*n) = n*a(2*n-1) + a(2*n-2); a(2*n+1) = a(2*n) + a(2*n-1).

Extensions

More terms from James Sellers, Sep 07 2000

A056952 Numerators of continued fraction for alternating factorial.

Original entry on oeis.org

0, 1, 1, 2, 4, 8, 20, 44, 124, 300, 920, 2420, 7940, 22460, 78040, 235260, 859580, 2741660, 10477880, 35152820, 139931620, 491459820, 2030707640, 7436765660, 31805257340, 121046445260, 534514790680, 2108118579060, 9591325648580
Offset: 0

Author

Aleksandar Petojevic, Sep 05 2000

Keywords

Crossrefs

Cf. A002793, A056922 (denominators).

Formula

a(0)=0; a(1)=1; a(n) = a(n-1) + (n/2)*a(n-2).
a(2n) = A002793(n); a(2n-1) = A002793(n) - n * A002793(n-1). - Max Alekseyev, Jul 07 2010

Extensions

More terms from James Sellers, Sep 07 2000

A052169 Equivalent of the Kurepa hypothesis for left factorial.

Original entry on oeis.org

1, 2, 5, 19, 91, 531, 3641, 28673, 254871, 2523223, 27526069, 328018989, 4239014627, 59043418019, 881715042417, 14052333488521, 238063061452591, 4271909380510383, 80941440893880941, 1614781745832924773, 33833522293642233339, 742799603083145395579
Offset: 2

Author

Aleksandar Petojevic, Jan 26 2000

Keywords

Crossrefs

Pairwise sums of A002467.

Programs

  • Maple
    a[2] := 1: a[3] := 2: for n from 4 to 21 do a[n] := (n-2)*a[n-1]+(n-3)*a[n-2] end do: seq(a[n], n = 2 .. 21); # Emeric Deutsch, Jun 15 2009
    # second Maple program:
    a:= proc(n) option remember; `if`(n<4, n-1,
          (n-2)*a(n-1)+(n-3)*a(n-2))
        end:
    seq(a(n), n=2..25);  # Alois P. Heinz, Aug 30 2016
  • Mathematica
    Numerator[k=1; NestList[1+1/(k++ #1)&,1,12]] (* Wouter Meeussen, Mar 24 2007 *)
    a[n_] := (n! - Subfactorial[n])/(n-1); Table[a[n], {n, 2, 23}] (* Jean-François Alcover, Jul 21 2017, after Emeric Deutsch's comment *)
  • Sage
    from sage.combinat.sloane_functions import ExtremesOfPermanentsSequence2 ; e = ExtremesOfPermanentsSequence2() ; it = e.gen(1,2,1) ; [next(it) for i in range(20)] #(5 rows) # Zerinvary Lajos, May 15 2009

Formula

a(2) = 1, a(3) = 2, a(n) = (n-2)*a(n-1) + (n-3)*a(n-2).
a(n) = A002467(n)/(n-1) (A002467(n) = number of non-derangements of {1,2,...,n}). - Emeric Deutsch, Jun 15 2009
a(n) = 2*floor((n+1)!*(n+3)/e+1/2) - 3*(floor(((n+1)!+1)/e)+ floor(((n+2)!+1)/e)) +(n+1)!+(n+2)!, n>1, with offset 0..a(0)= 1. - Gary Detlefs, Apr 18 2010
a(n) = 1/(n+1)*((n+2)!-floor(((n+2)!+1)/e)), with offset 0 a(n) = 1/(n-1)*(n! - floor((n!+1)/e)). - Gary Detlefs, Jul 11 2010
From Benedict W. J. Irwin, Jun 02 2016: (Start)
Let y(-1)=1, y(0)=1, and y(n) = (Sum_{k=0..n-1} y(k)+y(k-1))/n,
a(n) = (n-2)!*y(n-2).
(End)
a(n) = (Gamma(n+1,0)-exp(-1)*Gamma(n+1,-1))/(n-1). - Martin Clever, Mar 25 2023

Extensions

More terms from James Sellers, Jan 31 2000