cp's OEIS Frontend

This is a front-end for the Online Encyclopedia of Integer Sequences, made by Christian Perfect. The idea is to provide OEIS entries in non-ancient HTML, and then to think about how they're presented visually. The source code is on GitHub.

Showing 1-2 of 2 results.

A121965 a(n) = (n-1)*a(n-1)-a(n-2), a(0)=0, a(1)=1.

Original entry on oeis.org

0, 1, 1, 1, 2, 7, 33, 191, 1304, 10241, 90865, 898409, 9791634, 116601199, 1506023953, 20967734143, 313009988192, 4987192076929, 84469255319601, 1515459403675889, 28709259414522290, 572669728886769911, 11997355047207645841, 263369141309681438591
Offset: 0

Views

Author

Roger L. Bagula, Sep 02 2006

Keywords

Comments

a(n+1) = A058797(n).

Examples

			G.f. = x + x^2 + x^3 + 2*x^4 + 7*x^5 + 33*x^6 + 191*x^7 + 1304*x^8 + ...
		

References

  • Eugene Jahnke and Fritz Emde, Table of Functions with Formulae and Curves, (1945), page 144.

Crossrefs

Cf. A007754, A056921 (bisection), A058797, A106174.

Programs

  • Mathematica
    Needs["DiscreteMath`RSolve`"]; Clear[f]; f[n_Integer] = Module[{a}, a[n] /.RSolve[{a[n] == (n - 1)*a[n - 1] - a[n - 2], a[0] == 0, a[1] == 1},a[n], n][[1]] // Simplify] // ToRadicals Table[Floor[N[f[n]]], {n, 0, 25}]
    a[ n_] := With[ {m = Abs[n]}, If[ n==0, 0, Sign[n]^m Sum[ (-1)^k (m - k)! / k! Binomial[m - k, k], {k, 0, m/2}]]]; (* Michael Somos, Jan 28 2014 *)
    RecurrenceTable[{a[0]==0,a[1]==1,a[n]==(n-1)a[n-1]-a[n-2]},a,{n,30}] (* Harvey P. Dale, Jul 13 2019 *)
  • PARI
    {a(n) = local(s, A); s=sign(n); n=abs(n); if( n>0, A=vector(n,k,1); for(k=4, n, A[k] = (k-1) * A[k-1] - A[k-2]); s^n * A[n], 0)}; /* Michael Somos, Jan 28 2014 */
    
  • PARI
    {a(n) = local(s, a0, a1, a2); s = sign(n); s^n * if( n!=0, a1=1; for( k=2, abs(n), a2 = (k-1) * a1 - a0; a0 = a1; a1 = a2); a1, 0)}; /* Michael Somos, Jan 28 2014 */
    
  • PARI
    {a(n) = local(s, A); s=sign(n); n=abs(n); A = O(x); for(k=1, n, A = (1 + x * A') * x / (1 + x^2)); s^n * polcoeff(A, n)}; /* Michael Somos, Jan 28 2014 */
    
  • PARI
    {a(n) = local(s); if( n==0, 0, s=sign(n); n=abs(n)-1; s^(n+1) * sum(k=0, n\2, (-1)^k * (n-k)! / k! * binomial(n-k, k)))}; /* Michael Somos, Jan 28 2014 */

Formula

a(n) = ( J_n(2)*Y_0(2) - J_0(2)*Y_n(2) )/( J_1(2)* Y_0(2) - J_0(2)*Y_1(2) ) where J and Y are Bessel functions.
a(-n) = (-1)^n * a(n). - Michael Somos, Jan 28 2014
0 = a(n)*(a(n+2)) + a(n+1)*(-a(n+1) + a(n+2) - a(n+3)) + a(n+2)*(a(n+2)) for all n in Z. - Michael Somos, Jan 28 2014
G.f. A(x) =: y satisfies y = x + x^2 * (y' - y) as formal power series. - Michael Somos, Jan 28 2014
E.g.f. A(x) =: y satisfies 0 = y''' * (y' - y) + y'' * (y' - 2*y''). - Michael Somos, Jan 28 2014
a(n+1) = Sum_{k=0..n/2} (-1)^k * (n-k)! / k! * binomial(n-k, k) if n>=-1. - Michael Somos, Jan 28 2014

Extensions

Values (with rounding errors) and offset corrected by the Assoc. Eds. of the OEIS, Mar 27 2010
Added a(0)=0 from Michael Somos, Jan 28 2014

A273939 a(0) = 1, a(1) = 2; for k>0, a(2*k) = k*a(2*k-1) + a(2*k-2), a(2*k+1) = a(2*k) + a(2*k-1).

Original entry on oeis.org

1, 2, 3, 5, 13, 18, 67, 85, 407, 492, 2867, 3359, 23021, 26380, 207681, 234061, 2080169, 2314230, 22908239, 25222469, 275132929, 300355398, 3579042307, 3879397705, 50131814767, 54011212472, 752277576903, 806288789375, 12040320628153
Offset: 0

Views

Author

Seiichi Manyama, Sep 22 2016

Keywords

Crossrefs

Formula

a(n) = A056921(n) + A056922(n).
Showing 1-2 of 2 results.