cp's OEIS Frontend

This is a front-end for the Online Encyclopedia of Integer Sequences, made by Christian Perfect. The idea is to provide OEIS entries in non-ancient HTML, and then to think about how they're presented visually. The source code is on GitHub.

Showing 1-10 of 11 results. Next

A073743 Decimal expansion of cosh(1).

Original entry on oeis.org

1, 5, 4, 3, 0, 8, 0, 6, 3, 4, 8, 1, 5, 2, 4, 3, 7, 7, 8, 4, 7, 7, 9, 0, 5, 6, 2, 0, 7, 5, 7, 0, 6, 1, 6, 8, 2, 6, 0, 1, 5, 2, 9, 1, 1, 2, 3, 6, 5, 8, 6, 3, 7, 0, 4, 7, 3, 7, 4, 0, 2, 2, 1, 4, 7, 1, 0, 7, 6, 9, 0, 6, 3, 0, 4, 9, 2, 2, 3, 6, 9, 8, 9, 6, 4, 2, 6, 4, 7, 2, 6, 4, 3, 5, 5, 4, 3, 0, 3, 5, 5, 8, 7, 0, 4
Offset: 1

Views

Author

Rick L. Shepherd, Aug 07 2002

Keywords

Comments

Also decimal expansion of cos(i). - N. J. A. Sloane, Feb 12 2010
cosh(x) = (e^x + e^(-x))/2.
Equals Sum_{n>=0} 1/A010050(n). See Gradsteyn-Ryzhik (0.245.5). - R. J. Mathar, Oct 27 2012
By the Lindemann-Weierstrass theorem, this constant is transcendental. - Charles R Greathouse IV, May 14 2019

Examples

			1.54308063481524377847790562075...
		

References

  • S. Selby, editor, CRC Basic Mathematical Tables, CRC Press, 1970, p. 218.
  • Jerome Spanier and Keith B. Oldham, "Atlas of Functions", Hemisphere Publishing Corp., 1987, chapter 2, equation 2:5:6 at page 20.

Crossrefs

Cf. A068118 (continued fraction), A073742, A073744, A073745, A073746, A073747, A049470, A137204.

Programs

  • Maple
    Digits:=100: evalf(cosh(1)); # Wesley Ivan Hurt, Nov 18 2014
  • Mathematica
    RealDigits[Cosh[1],10,120][[1]] (* Harvey P. Dale, Aug 03 2014 *)
  • PARI
    cosh(1)

Formula

Continued fraction representation: cosh(1) = 1 + 1/(2 - 2/(13 - 12/(31 - ... - (2*n - 4)*(2*n - 5)/((4*n^2 - 10*n + 7) - ... )))). See A051396 for proof. Cf. A049470 (cos(1)) and A073742 (sinh(1)). - Peter Bala, Sep 05 2016
Equals Product_{k>=0} 1 + 4/((2*k+1)*Pi)^2. - Amiram Eldar, Jul 16 2020
Equals 1/A073746 = A137204/2. - Hugo Pfoertner, Dec 27 2024

A087350 a(n) = Sum_{k=0..n} (3*n)!/(3*k)!.

Original entry on oeis.org

1, 7, 841, 423865, 559501801, 1527439916731, 7478345832314977, 59677199741873516461, 724719913665311983902385, 12718834484826225317486856751, 309830808050366848733979830454361, 10142621332336809160155563729753961697, 434509897877308904421064350182659719099481
Offset: 0

Views

Author

Vladeta Jovovic, Oct 20 2003

Keywords

Crossrefs

Programs

  • PARI
    a(n)={sum(k=0, n, (3*n)!/(3*k)!)} \\ Andrew Howroyd, Jan 27 2020

Formula

a(n) = floor((3*n)!*C) where C = 1/3*exp(1)+2/3*exp(-1/2)*cos(1/2*3^(1/2)) = 1.16805831337591852551625692...

Extensions

Terms a(11) and beyond from Andrew Howroyd, Jan 27 2020

A337725 a(n) = (3*n+1)! * Sum_{k=0..n} 1 / (3*k+1)!.

Original entry on oeis.org

1, 25, 5251, 3780721, 6487717237, 21798729916321, 126737815733490295, 1171057417377450325801, 16160592359808814496053801, 317652603424402057734433512457, 8567090714356123497097671830965291, 307592825008242258039794809418977808065
Offset: 0

Views

Author

Ilya Gutkovskiy, Sep 17 2020

Keywords

Crossrefs

Programs

  • Mathematica
    Table[(3 n + 1)! Sum[1/(3 k + 1)!, {k, 0, n}], {n, 0, 11}]
    Table[(3 n + 1)! SeriesCoefficient[(Exp[3 x/2] - 2 Sin[Pi/6 - Sqrt[3] x/2])/(3 Exp[x/2] (1 - x^3)), {x, 0, 3 n + 1}], {n, 0, 11}]
    Table[Floor[(Exp[3/2] + 2 Sin[(3 Sqrt[3] - Pi)/6])/(3 Sqrt[Exp[1]]) (3 n + 1)!], {n, 0, 11}]
  • PARI
    a(n) = (3*n+1)!*sum(k=0, n, 1/(3*k+1)!); \\ Michel Marcus, Sep 17 2020

Formula

E.g.f.: (exp(3*x/2) - 2 * sin(Pi/6 - sqrt(3)*x/2)) / (3*exp(x/2) * (1 - x^3)) = x + 25*x^4/4! + 5251*x^7/7! + 3780721*x^10/10! + ...
a(n) = floor(c * (3*n+1)!), where c = (exp(3/2) + 2 * sin((3 * sqrt(3) - Pi) / 6))/(3 * sqrt(exp(1))) = A143820.

A337727 a(n) = (4*n)! * Sum_{k=0..n} 1 / (4*k)!.

Original entry on oeis.org

1, 25, 42001, 498971881, 21795091762081, 2534333270094778681, 646315807872650838343345, 317599587988620621961919733001, 274101148417699141578015206369183041, 387502275541069630431671657548241448722521, 849931991080760484603611346800010863970028660561
Offset: 0

Views

Author

Ilya Gutkovskiy, Sep 17 2020

Keywords

Crossrefs

Programs

  • Mathematica
    Table[(4 n)! Sum[1/(4 k)!, {k, 0, n}], {n, 0, 10}]
    Table[(4 n)! SeriesCoefficient[(1/2) (Cos[x] + Cosh[x])/(1 - x^4), {x, 0, 4 n}], {n, 0, 10}]
    Table[Floor[(1/2) (Cos[1] + Cosh[1]) (4 n)!], {n, 0, 10}]
  • PARI
    a(n) = (4*n)!*sum(k=0, n, 1/(4*k)!); \\ Michel Marcus, Sep 17 2020

Formula

E.g.f.: (1/2) * (cos(x) + cosh(x)) / (1 - x^4) = 1 + 25*x^4/4! + 42001*x^8/8! + 498971881*x^12/12! + ...
a(n) = floor(c * (4*n)!), where c = (cos(1) + cosh(1)) / 2 = A332890.

A337728 a(n) = (4*n+1)! * Sum_{k=0..n} 1 / (4*k+1)!.

Original entry on oeis.org

1, 121, 365905, 6278929801, 358652470233121, 51516840824285500441, 15640512874253077933887601, 8915467710633236496186345872425, 8755702529258688898174686554391144001, 13878488965077362598718732163634314533105081, 33731389859841228248933904149069928786421237268881
Offset: 0

Views

Author

Ilya Gutkovskiy, Sep 17 2020

Keywords

Crossrefs

Programs

  • Mathematica
    Table[(4 n + 1)! Sum[1/(4 k + 1)!, {k, 0, n}], {n, 0, 10}]
    Table[(4 n + 1)! SeriesCoefficient[(1/2) (Sin[x] + Sinh[x])/(1 - x^4), {x, 0, 4 n + 1}], {n, 0, 10}]
    Table[Floor[(1/2) (Sin[1] + Sinh[1]) (4 n + 1)!], {n, 0, 10}]
  • PARI
    a(n) = (4*n+1)!*sum(k=0, n, 1/(4*k+1)!); \\ Michel Marcus, Sep 17 2020

Formula

E.g.f.: (1/2) * (sin(x) + sinh(x)) / (1 - x^4) = x + 121*x^5/5! + 365905*x^9/9! + 6278929801*x^13/13! + ...
a(n) = floor(c * (4*n+1)!), where c = (sin(1) + sinh(1)) / 2 = A334363.

A337726 a(n) = (3*n+2)! * Sum_{k=0..n} 1 / (3*k+2)!.

Original entry on oeis.org

1, 61, 20497, 20292031, 44317795705, 180816606476401, 1236785588298582841, 13142083661260741268467, 205016505115667563788085201, 4494781858155895668489979946725, 133764708098719455094261803214536001, 5252940087036713001551661012234828759271
Offset: 0

Views

Author

Ilya Gutkovskiy, Sep 17 2020

Keywords

Crossrefs

Programs

  • Mathematica
    Table[(3 n + 2)! Sum[1/(3 k + 2)!, {k, 0, n}], {n, 0, 11}]
    Table[(3 n + 2)! SeriesCoefficient[(Exp[3 x/2] - 2 Sin[Sqrt[3] x/2 + Pi/6])/(3 Exp[x/2] (1 - x^3)), {x, 0, 3 n + 2}], {n, 0, 11}]
    Table[Floor[(Exp[3/2] - 2 Sin[(3 Sqrt[3] + Pi)/6])/(3 Sqrt[Exp[1]]) (3 n + 2)!], {n, 0, 11}]
  • PARI
    a(n) = (3*n+2)!*sum(k=0, n, 1/(3*k+2)!); \\ Michel Marcus, Sep 17 2020

Formula

E.g.f.: (exp(3*x/2) - 2 * sin(sqrt(3)*x/2 + Pi/6)) / (3*exp(x/2) * (1 - x^3)) = x^2/2! + 61*x^5/5! + 20497*x^8/8! + 20292031*x^11/11! + ...
a(n) = floor(c * (3*n+2)!), where c = (exp(3/2) - 2 * sin((3 * sqrt(3) + Pi) / 6))/(3 * sqrt(exp(1))) = A143821.

A337729 a(n) = (4*n+2)! * Sum_{k=0..n} 1 / (4*k+2)!.

Original entry on oeis.org

1, 361, 1819441, 43710250585, 3210080802962401, 563561785768079119561, 202205968733586788098486801, 132994909755454702268136738753721, 148026526435655214537290625514621562305, 262237873172349351865682580536682974917045801, 704454843460345510903820429747302209179158476142321
Offset: 0

Views

Author

Ilya Gutkovskiy, Sep 17 2020

Keywords

Crossrefs

Programs

  • Mathematica
    Table[(4 n + 2)! Sum[1/(4 k + 2)!, {k, 0, n}], {n, 0, 10}]
    Table[(4 n + 2)! SeriesCoefficient[(1/2) (Cosh[x] - Cos[x])/(1 - x^4), {x, 0, 4 n + 2}], {n, 0, 10}]
    Table[Floor[(1/2) (Cosh[1] - Cos[1]) (4 n + 2)!], {n, 0, 10}]
  • PARI
    a(n) = (4*n+2)!*sum(k=0, n, 1/(4*k+2)!); \\ Michel Marcus, Sep 17 2020

Formula

E.g.f.: (1/2) * (cosh(x) - cos(x)) / (1 - x^4) = x^2/2! + 361*x^6/6! + 1819441*x^10/10! + 43710250585*x^14/14! + ...
a(n) = floor(c * (4*n+2)!), where c = (cosh(1) - cos(1)) / 2 = A334364.

A337730 a(n) = (4*n+3)! * Sum_{k=0..n} 1 / (4*k+3)!.

Original entry on oeis.org

1, 841, 6660721, 218205219961, 20298322381652065, 4313799472548696853801, 1816972337837511114820981201, 1372104830641374893468212163747161, 1724241814377177346127894133451232399041, 3403694723384093133512770088891935585284510985
Offset: 0

Views

Author

Ilya Gutkovskiy, Sep 17 2020

Keywords

Crossrefs

Programs

  • Mathematica
    Table[(4 n + 3)! Sum[1/(4 k + 3)!, {k, 0, n}], {n, 0, 9}]
    Table[(4 n + 3)! SeriesCoefficient[(1/2) (Sinh[x] - Sin[x])/(1 - x^4), {x, 0, 4 n + 3}], {n, 0, 9}]
    Table[Floor[(1/2) (Sinh[1] - Sin[1]) (4 n + 3)!], {n, 0, 9}]
  • PARI
    a(n) = (4*n+3)!*sum(k=0, n, 1/(4*k+3)!); \\ Michel Marcus, Sep 17 2020

Formula

E.g.f.: (1/2) * (sinh(x) - sin(x)) / (1 - x^4) = x^3/3! + 841*x^7/7! + 6660721*x^11/11! + 218205219961*x^15/15! + ...
a(n) = floor(c * (4*n+3)!), where c = (sinh(1) - sin(1)) / 2 = A334365.

A275651 a(n) = (2*n)!*Sum_{k = 0..n} (-1)^k/(2*k)!.

Original entry on oeis.org

1, 1, 13, 389, 21785, 1960649, 258805669, 47102631757, 11304631621681, 3459217276234385, 1314502564969066301, 607300185015708631061, 335229702128671164345673
Offset: 0

Views

Author

Peter Bala, Sep 02 2016

Keywords

Comments

Compare with the derangement numbers A000166(n) := n!*sum_{k = 0..n} (-1)^k/k! and also A074790.

Crossrefs

Programs

  • Maple
    A275651 := proc(n) option remember; if (n = 0) then 1 else 2*n*(2*n - 1)*A275651(n-1)+(-1)^n end if; end proc:
    seq(A275651(n), n = 0..20);
  • Mathematica
    Table[(2 n)!*Sum[(-1)^k/(2 k)!, {k, 0, n}], {n, 12}] (* Michael De Vlieger, Sep 04 2016 *)

Formula

a(n) ~ (2*n)!*cos(1).
E.g.f. for the aerated sequence: cos(x)/(1 - x^2) = 1 + x^2/2! + 13*x^4/4! + 389*x^6/6! + ....
Recurrence equations:
a(n) = 2*n*(2*n - 1)*a(n-1) + (-1)^n with a(0) = 1.
a(n) = (4*n^2 - 2*n - 1)*a(n - 1) + (2*n - 2)*(2*n - 3)*a(n - 2) with a(0) = 1, a(1) = 1.
The latter recurrence is also satisfied by the sequence b(n) := (2*n)! with b(0) = 1, b(1) = 2. This leads to the continued fraction representation a(n) = (2*n )!*( 1/(1 + 1/(1 + 2/(11 + 12/(29 + ... + (2*n - 2)*(2*n - 3)/(4*n^2 - 2*n - 1) )))) ) for n >= 3. Taking the limit gives the continued fraction representation cos(1) = A049470 = 1/(1 + 1/(1 + 2/(11 + 12/(29 + ... + (2*n - 2)*(2*n - 3)/((4*n^2 - 2*n - 1) + ... ))))). Cf. A073743.

A119828 Number triangle T(n,k)=(2n)!/(2k)!.

Original entry on oeis.org

1, 2, 1, 24, 12, 1, 720, 360, 30, 1, 40320, 20160, 1680, 56, 1, 3628800, 1814400, 151200, 5040, 90, 1, 479001600, 239500800, 19958400, 665280, 11880, 132, 1, 87178291200, 43589145600, 3632428800, 121080960, 2162160, 24024, 182, 1
Offset: 0

Views

Author

Paul Barry, May 25 2006

Keywords

Comments

Row sums are A051396(n+1). Diagonal sums are A119829. Inverse is the bi-diagonal array A119830. E.g.f. cosh(x*y)/(1-y*x^2) produces an aerated version.

Examples

			Triangle begins as:
        1,
        2,       1,
       24,      12,      1,
      720,     360,     30,    1,
    40320,   20160,   1680,   56,  1,
  3628800, 1814400, 151200, 5040, 90, 1
		

Programs

  • Mathematica
    Flatten[Table[(2n)!/(2k)!, {n, 0, 7}, {k, 0, n}]] (* James C. McMahon, Sep 23 2024 *)

Formula

Number triangle T(n,k)=[k<=n](2n)!/(2k)!
Showing 1-10 of 11 results. Next