cp's OEIS Frontend

This is a front-end for the Online Encyclopedia of Integer Sequences, made by Christian Perfect. The idea is to provide OEIS entries in non-ancient HTML, and then to think about how they're presented visually. The source code is on GitHub.

Showing 1-10 of 42 results. Next

A010050 a(n) = (2n)!.

Original entry on oeis.org

1, 2, 24, 720, 40320, 3628800, 479001600, 87178291200, 20922789888000, 6402373705728000, 2432902008176640000, 1124000727777607680000, 620448401733239439360000, 403291461126605635584000000, 304888344611713860501504000000, 265252859812191058636308480000000
Offset: 0

Views

Author

Joe Keane (jgk(AT)jgk.org)

Keywords

Comments

Denominators in the expansion of cos(x): cos(x) = 1 - x^2/2! + x^4/4! - x^6/6! + x^8/8! - ...
Contribution from Peter Bala, Feb 21 2011: (Start)
We may compare the representation a(n) = Product_{k = 0..n-1} (n*(n+1)-k*(k+1)) with n! = Product_{k = 0..n-1} (n-k). Thus we may view a(n) as a generalized factorial function associated with the oblong numbers A002378. Cf. A000680.
The associated generalized binomial coefficients a(n)/(a(k)*a(n-k)) are triangle A086645, cf. A186432. (End)
Also, this sequence is the denominator of cosh(x) = (e^x + e^(-x))/2 = 1 + x^2/2! + x^4/4! + x^6/6! + ... - Mohammad K. Azarian, Jan 19 2012
Also (2n+1)-th derivative of arccoth(x) at x = 0. - Michel Lagneau, Aug 18 2012
Product of the partition parts of 2n+1 into exactly two positive integer parts, n > 0. Example: a(3) = 720, since 2(3)+1 = 7 has 3 partitions with exactly two positive integer parts: (6,1), (5,2), (4,3). Multiplying the parts in these partitions gives: 6! = 720. - Wesley Ivan Hurt, Jun 03 2013

Examples

			G.f. = 1 + 2*x + 24*x^2 + 720*x^3 + 40320*x^4 + 3628800*x^5 + ...
		

References

  • John H. Conway and Richard K. Guy, The Book of Numbers, New York: Springer-Verlag, 1996. See p. 110.
  • H. B. Dwight, Tables of Integrals and Other Mathematical Data, Macmillan, NY, 1968, p. 88.
  • Isaac Newton, De analysi, 1669; reprinted in D. Whiteside, ed., The Mathematical Works of Isaac Newton, vol. 1, Johnson Reprint Co., 1964; see p. 20.
  • Jerome Spanier and Keith B. Oldham, "Atlas of Functions", Hemisphere Publishing Corp., 1987, chapters 32 and 33, equations 32:6:1 and 33:6:1 at pages 300 and 314.

Crossrefs

Programs

Formula

a(n) = 2^n*A000680(n).
E.g.f.: arctanh(x) = Sum_{k>=0} a(k) * x^(2*k+1)/ (2*k+1)!.
E.g.f.: 1/(1-x^2) = Sum_{k>=0} a(k) * x^(2*k) / (2*k)!. - Paul Barry, Sep 14 2004
D-finite with recurrence: a(n+1) = a(n)*(2*n+1)*(2*n+2) = a(n)*A002939(n-1). - Lekraj Beedassy, Apr 29 2005
a(n) = Product_{k = 1..n} (2*k*n-k*(k-1)). - Peter Bala, Feb 21 2011
G.f.: G(0) where G(k) = 1 + 2*x*(2*k+1)*(4*k+1)/(1 - 4*x*(k+1)*(4*k+3)/(4*x*(k+1)*(4*k+3) + 1/G(k+1))); (continued fraction). - Sergei N. Gladkovskii, Nov 18 2012
a(n) = 2*A002674(n), n > 0. - Wesley Ivan Hurt, Jun 05 2013
From Ilya Gutkovskiy, Jan 20 2017: (Start)
a(n) ~ 2*sqrt(Pi)*4^n*n^(2*n+1/2)/exp(2*n).
Sum_{n>=0} 1/a(n) = cosh(1) = A073743. (End)

Extensions

Third line of data from M. F. Hasler, Apr 22 2015

A049470 Decimal expansion of cos(1).

Original entry on oeis.org

5, 4, 0, 3, 0, 2, 3, 0, 5, 8, 6, 8, 1, 3, 9, 7, 1, 7, 4, 0, 0, 9, 3, 6, 6, 0, 7, 4, 4, 2, 9, 7, 6, 6, 0, 3, 7, 3, 2, 3, 1, 0, 4, 2, 0, 6, 1, 7, 9, 2, 2, 2, 2, 7, 6, 7, 0, 0, 9, 7, 2, 5, 5, 3, 8, 1, 1, 0, 0, 3, 9, 4, 7, 7, 4, 4, 7, 1, 7, 6, 4, 5, 1, 7, 9, 5, 1, 8, 5, 6, 0, 8, 7, 1, 8, 3, 0, 8, 9
Offset: 0

Views

Author

Albert du Toit (dutwa(AT)intekom.co.za), N. J. A. Sloane

Keywords

Comments

Also, decimal expansion of the real part of e^i. - Bruno Berselli, Feb 08 2013
By the Lindemann-Weierstrass theorem, this constant is transcendental. - Charles R Greathouse IV, May 13 2019

Examples

			0.5403023058681397...
		

Crossrefs

Cf. A049469 (imaginary part of e^i), A211883 (real part of -(i^e)), A211884 (imaginary part of -(i^e)). - Bruno Berselli, Feb 08 2013
Cf. A073743 ( cosh(1) ), A073448, A275651.

Programs

Formula

Continued fraction representation: cos(1) = 1/(1 + 1/(1 + 2/(11 + 12/(29 + ... + (2*n - 2)*(2*n - 3)/((4*n^2 - 2*n - 1) + ... ))))). See A275651 for proof. Cf. A073743. - Peter Bala, Sep 02 2016
Equals Sum_{k >= 0} (-1)^k/A010050(k), where A010050(k) = (2k)! [See Gradshteyn and Ryzhik]. - A.H.M. Smeets, Sep 22 2018
Equals 1/A073448. - Alois P. Heinz, Jan 23 2023
From Gerry Martens, May 04 2024: (Start)
Equals (4*(cos(1/4)^4 + sin(1/4)^4) - 3).
Equals (16*(cos(1/4)^6 + sin(1/4)^6) - 10)/6. (End)

A073742 Decimal expansion of sinh(1).

Original entry on oeis.org

1, 1, 7, 5, 2, 0, 1, 1, 9, 3, 6, 4, 3, 8, 0, 1, 4, 5, 6, 8, 8, 2, 3, 8, 1, 8, 5, 0, 5, 9, 5, 6, 0, 0, 8, 1, 5, 1, 5, 5, 7, 1, 7, 9, 8, 1, 3, 3, 4, 0, 9, 5, 8, 7, 0, 2, 2, 9, 5, 6, 5, 4, 1, 3, 0, 1, 3, 3, 0, 7, 5, 6, 7, 3, 0, 4, 3, 2, 3, 8, 9, 5, 6, 0, 7, 1, 1, 7, 4, 5, 2, 0, 8, 9, 6, 2, 3, 3, 9, 1, 8, 4, 0, 4, 1
Offset: 1

Views

Author

Rick L. Shepherd, Aug 07 2002

Keywords

Comments

By the Lindemann-Weierstrass theorem, this constant is transcendental. - Charles R Greathouse IV, May 14 2019
Decimal expansion of u > 0 such that 1 = arclength on the hyperbola y^2 - x^2 = 1 from (0,0) to (u,y(u)). - Clark Kimberling, Jul 04 2020

Examples

			1.17520119364380145688238185059...
		

References

  • S. Selby, editor, CRC Basic Mathematical Tables, CRC Press, 1970, p. 218.
  • Jerome Spanier and Keith B. Oldham, "Atlas of Functions", Hemisphere Publishing Corp., 1987, chapter 2, equation 2:5:7 at page 20.

Crossrefs

Cf. A068139 (continued fraction), A073743, A073744, A073745, A073746, A073747, A049469, A049470, A174548.

Programs

  • Mathematica
    First@ RealDigits@ N[Sinh@ 1, 120] (* Michael De Vlieger, Sep 04 2016 *)
  • PARI
    sinh(1)

Formula

Equals (e - e^(-1))/2.
Equals sin(i)/i. - N. J. A. Sloane, Feb 12 2010
Equals Sum_{n>=0} 1/A009445(n). See Gradsteyn-Ryzhik (0.245.6.) - R. J. Mathar, Oct 27 2012
Continued fraction representation: sinh(1) = 1 + 1/(6 - 6/(21 - 20/(43 - 42/(73 - ... - (2*n - 1)*(2*n - 2)/((2*n*(2*n + 1) + 1) - ... ))))). See A051397 for proof. Cf. A049469. - Peter Bala, Sep 02 2016
Equals Product_{k>=1} 1 + 1/(k * Pi)^2. - Amiram Eldar, Jul 16 2020
Equals 1/A073745 = A174548/2. - Hugo Pfoertner, Dec 27 2024

A073747 Decimal expansion of coth(1).

Original entry on oeis.org

1, 3, 1, 3, 0, 3, 5, 2, 8, 5, 4, 9, 9, 3, 3, 1, 3, 0, 3, 6, 3, 6, 1, 6, 1, 2, 4, 6, 9, 3, 0, 8, 4, 7, 8, 3, 2, 9, 1, 2, 0, 1, 3, 9, 4, 1, 2, 4, 0, 4, 5, 2, 6, 5, 5, 5, 4, 3, 1, 5, 2, 9, 6, 7, 5, 6, 7, 0, 8, 4, 2, 7, 0, 4, 6, 1, 8, 7, 4, 3, 8, 2, 6, 7, 4, 6, 7, 9, 2, 4, 1, 4, 8, 0, 8, 5, 6, 3, 0, 2, 9, 4, 6, 7, 9
Offset: 1

Views

Author

Rick L. Shepherd, Aug 07 2002

Keywords

Comments

coth(x) = (e^x + e^(-x))/(e^x - e^(-x)).
Because the continued fraction for coth(1) is all positive odd numbers in sequence, the second Mathematica program below also generates the sequence. - Harvey P. Dale, Oct 15 2011
By the Lindemann-Weierstrass theorem, this constant is transcendental. - Charles R Greathouse IV, May 14 2019

Examples

			1.31303528549933130363616124693...
		

References

  • Samuel M. Selby, editor, CRC Basic Mathematical Tables, CRC Press, 1970, p. 218.

Crossrefs

Cf. A005408 (continued fraction: odd numbers), A073821 (continued fraction exp. is even numbers), A073744 (tanh(1)=1/A073747), A073742 (sinh(1)), A073743 (cosh(1)), A073745 (csch(1)), A073746 (sech(1)), A349004.

Programs

  • Mathematica
    RealDigits[Coth[1],10,120][[1]] (* or *) RealDigits[ FromContinuedFraction[ Range[1,1001,2]],10,120][[1]] (* Harvey P. Dale, Oct 15 2011 *) (* see Comments, above, for the second program *)
  • PARI
    1/tanh(1)

Formula

Equals 1 + Sum_{n>=1} (2^(2*n)*B(2*n))/(2*n)! = 1 + Sum_{n>=1} (-1)^(n+1)*2*(A046988(n+1) / A002432(n+1)). - Terry D. Grant, May 30 2017
Equals 1 + BesselI(3/2, 1)/BesselI(1/2, 1). - Terry D. Grant, Jun 18 2018
Equals 1 + Sum_{k>=1} csch(2^k) (Ohtsuka, 2015; Stenger, 2017). - Amiram Eldar, Oct 04 2021

A073744 Decimal expansion of tanh(1).

Original entry on oeis.org

7, 6, 1, 5, 9, 4, 1, 5, 5, 9, 5, 5, 7, 6, 4, 8, 8, 8, 1, 1, 9, 4, 5, 8, 2, 8, 2, 6, 0, 4, 7, 9, 3, 5, 9, 0, 4, 1, 2, 7, 6, 8, 5, 9, 7, 2, 5, 7, 9, 3, 6, 5, 5, 1, 5, 9, 6, 8, 1, 0, 5, 0, 0, 1, 2, 1, 9, 5, 3, 2, 4, 4, 5, 7, 6, 6, 3, 8, 4, 8, 3, 4, 5, 8, 9, 4, 7, 5, 2, 1, 6, 7, 3, 6, 7, 6, 7, 1, 4, 4, 2, 1, 9, 0
Offset: 0

Views

Author

Rick L. Shepherd, Aug 07 2002

Keywords

Comments

Also decimal expansion of tan(i)/i. - N. J. A. Sloane, Feb 12 2010
tanh(x) = (e^x - e^(-x)) / (e^x + e^(-x)).
By the Lindemann-Weierstrass theorem, this constant is transcendental. - Charles R Greathouse IV, May 14 2019

Examples

			0.76159415595576488811945828260...
		

References

  • S. Selby, editor, CRC Basic Mathematical Tables, CRC Press, 1970, p. 218.

Crossrefs

Cf. A004273 (continued fraction), A073747 (coth(1)=1/A073744), A073742 (sinh(1)), A073743 (cosh(1)), A073745 (csch(1)), A073746 (sech(1)).

Programs

  • Mathematica
    RealDigits[Tanh[1], 10, 100][[1]] (* Amiram Eldar, Aug 19 2020 *)
  • PARI
    tanh(1)

Formula

Equals Sum_{k>=1} bernoulli(2*k)*2^(2*k)*(2^(2*k)-1)/(2*k)!, where bernoulli(k) = A027641(k)/A027642(k) is the k-th Bernoulli number. - Amiram Eldar, Aug 19 2020
Equal to the continued fraction [0;1,3,5,...,2n-1,...]. - Thomas Ordowski, Oct 22 2024
Equals 1-A349003. - Hugo Pfoertner, Oct 22 2024

A051396 a(n) = (2*n-2)*(2*n-3)*a(n-1)+1.

Original entry on oeis.org

0, 1, 3, 37, 1111, 62217, 5599531, 739138093, 134523132927, 32285551902481, 9879378882159187, 3754163975220491061, 1734423756551866870183, 957401913616630512341017, 622311243850809833021661051, 470467300351212233764375754557, 409306551305554643375006906464591
Offset: 0

Views

Author

Keywords

Comments

The sequence 1,0,3,0,37,... has e.g.f. cosh(x)/(1-x^2) with a(n) = Sum_{k=0..n} C(n,k)k!(1+(-1)^k)(1+(-1)^(n-k))/4. - Paul Barry, May 01 2005

Crossrefs

Bisection of abs(A009179(n)). Cf. A049470 (cos(1)), A073743 (cosh(1)), A275651.

Programs

  • Maple
    A051396 := proc(n) option remember; if n <= 1 then n else (2*n-2)*(2*n-3)*A051396(n-1)+1; fi; end;
  • Mathematica
    a[0] = 0; a[n_] := a[n] = (2*n-2)*(2*n-3)*a[n-1] + 1;
    Table[a[n], {n, 0, 16}] (* Jean-François Alcover, Dec 11 2017 *)
    nxt[{n_,a_}]:={n+1,a(4n^2-2n)+1}; NestList[nxt,{0,0},20][[;;,2]] (* Harvey P. Dale, Sep 26 2023 *)

Formula

a(n) = Sum_{k=0..n-1} (2*n-2)!/(2*k)! = floor((2*n-2)!*cosh(1)), n>=1. - Vladeta Jovovic, Aug 10 2002
a(n+1) = Sum_{k=0..2n}, C(2n, k)*k!*(1+(-1)^k)^2. - Paul Barry, May 01 2005
a(n) +(-4*n^2+10*n-7)*a(n-1) +2*(n-2)*(2*n-5)*a(n-2)=0. - R. J. Mathar, Nov 26 2012
From Peter Bala, Sep 05 2016: (Start)
The sequence b(n) := (2*n - 2)! also satisfies Mathar's recurrence with b(1) = 1, b(2) = 2. This leads to the continued fraction representation a(n) = (2*n - 2)!*(1 + 1/(2 - 2/(13 - 12/(31 - ... - (2*n - 4)*(2*n - 5)/(4*n^2 - 10*n + 7) )))) for n >= 3. Taking the limit gives the continued fraction representation cosh(1) = A073743 = 1 + 1/(2 - 2/(13 - 12/(31 - ... - (2*n - 4)*(2*n - 5)/((4*n^2 - 10*n + 7) - ... )))). (End)

A143819 Decimal expansion of Sum_{k>=0} 1/(3*k)!.

Original entry on oeis.org

1, 1, 6, 8, 0, 5, 8, 3, 1, 3, 3, 7, 5, 9, 1, 8, 5, 2, 5, 5, 1, 6, 2, 5, 6, 9, 2, 9, 6, 1, 1, 1, 4, 4, 7, 4, 7, 7, 1, 6, 9, 3, 3, 2, 9, 5, 1, 1, 3, 2, 9, 2, 5, 1, 6, 3, 8, 5, 8, 9, 1, 2, 3, 2, 6, 8, 5, 1, 1, 3, 4, 4, 6, 4, 7, 3, 2, 0, 5, 5, 7, 1, 7, 9, 0, 8, 7, 2, 4, 8, 0, 5, 8, 5, 5, 1, 9, 1, 8, 9, 6
Offset: 1

Views

Author

Peter Bala, Sep 03 2008

Keywords

Comments

Previous name was: Decimal expansion of the constant 1 + 1/3! + 1/6! + 1/9! + ... = 1.16805 83133 75918 ... .
Define a sequence R(n) of real numbers by R(n) := Sum_{k>=0} (3*k)^n/(3*k)! for n = 0,1,2,... . This constant is R(0); the decimal expansions of R(2) - R(1) = 1/1! + 1/4! + 1/7! and R(1) = 1/2! + 1/5! + 1/8! + ... may be found in A143820 and A143821. It is easy to verify that the sequence R(n) satisfies the recurrence relation u(n+3) = 3*u(n+2) - 2*u(n+1) + Sum_{i=0..n} binomial(n,i) * 3^(n-i)*u(i). Hence R(n) is an integral linear combination of R(0), R(1) and R(2) and so also an integral linear combination of R(0), R(1) and R(2) - R(1). Some examples are given below.
Bowman and Mc Laughlin (Corollary 10 with m = -1) give a continued fraction expansion for this constant and deduce the constant is irrational. - Peter Bala, Apr 17 2017

Examples

			1.168058313375918525516256929611144747716933295113292516385891232685...
R(n) as a linear combination of R(0), R(1) and R(2) - R(1).
=======================================
  R(n)  |     R(0)     R(1)   R(2)-R(1)
=======================================
  R(3)  |       1        1        3
  R(4)  |       6        2        7
  R(5)  |      25       11       16
  R(6)  |      91       66       46
  R(7)  |     322      352      203
  R(8)  |    1232     1730     1178
  R(9)  |    5672     8233     7242
  R(10) |   32202    39987    43786
  ...
The column entries are from A143815, A143816 and A143817.
		

Crossrefs

Cf. A001113 (Sum 1/k!), A073743 (Sum 1/(2k)!), this sequence (Sum 1/(3k)!), A332890 (Sum 1/(4k)!), A269296 (Sum 1/(5k)!), A332892 (Sum 1/(6k)!), A346441.

Programs

  • Mathematica
    RealDigits[ N[ 1/3*(2*Cos[Sqrt[3]/2]/Sqrt[E] + E), 105]][[1]] (* Jean-François Alcover, Nov 08 2012 *)
    With[{nn=120},RealDigits[N[Total[Table[1/(3n)!,{n,nn}]]+1,nn],10,nn][[1]]] (* Harvey P. Dale, Apr 20 2013 *)
  • PARI
    suminf(k=0, 1/(3*k)!) \\ Michel Marcus, Feb 21 2016

Formula

Equals (exp(1) + exp(w) + exp(w^2))/3, where w = exp(2*Pi*i/3).
A143819 + A143820 + A143821 = exp(1).
Equals 1/3 * (e + 2 * cos(sqrt(3)/2) / sqrt(e)). - Bernard Schott, Mar 01 2020
Sum_{k>=0} (-1)^k / (3*k)! = (exp(-1) + 2*exp(1/2)*cos(sqrt(3)/2))/ 3 = 0.83471946857721... - Vaclav Kotesovec, Mar 02 2020
Continued fraction: 1 + 1/(6 - 6/(121 - 120/(505 - ... - P(n-1)/((P(n) + 1) - ... )))), where P(n) = (3*n )*(3*n - 1)*(3*n - 2) for n >= 1. Cf. A346441. - Peter Bala, Feb 22 2024

Extensions

Offset corrected by R. J. Mathar, Feb 05 2009
New name from Bernard Schott, Mar 02 2020

A143820 Decimal expansion of the constant 1/1! + 1/4! + 1/7! + ...

Original entry on oeis.org

1, 0, 4, 1, 8, 6, 5, 3, 5, 5, 0, 9, 8, 9, 0, 9, 8, 4, 6, 3, 0, 1, 3, 3, 6, 6, 1, 5, 0, 2, 1, 5, 2, 7, 3, 8, 7, 6, 9, 7, 0, 8, 3, 5, 7, 1, 7, 2, 4, 1, 6, 3, 4, 5, 9, 5, 4, 5, 7, 3, 9, 2, 5, 5, 4, 2, 3, 5, 5, 1, 7, 4, 1, 1, 6, 1, 0, 7, 4, 0, 2, 9, 5, 9, 2, 8, 6, 2, 6, 7, 3, 9, 3, 0, 1, 0, 0, 6, 5, 5, 2
Offset: 1

Views

Author

Peter Bala, Sep 03 2008

Keywords

Comments

Define a sequence R(n) of real numbers by R(n) := Sum_{k >= 0} (3*k)^n/(3*k)! for n = 0,1,2,... . This constant is R(2) - R(1); the decimal expansions of R(0) = 1 + 1/3! + 1/6! + ... and R(1) = 1/2! + 1/5! + 1/8! + ... may be found in A143819 and A143821. It is easy to verify that the sequence R(n) satisfies the recurrence relation u(n+3) = 3*u(n+2) - 2*u(n+1) + Sum_{i = 0..n} binomial(n,i) * 3^(n-i)*u(i). Hence R(n) is an integral linear combination of R(0), R(1) and R(2) and so also an integral linear combination of R(0), R(1) and R(2) - R(1).
R(n) as a linear combination of R(0), R(1) and R(2) - R(1).
========================================
| linear combination of
R(n) | R(0) R(1) R(2) - R(1)
========================================
R(3) | 1 1 3
R(4) | 6 2 7
R(5) | 25 11 16
R(6) | 91 66 46
R(7) | 322 352 203
R(8) | 1232 1730 1178
R(9) | 5672 8233 7242
R(10) | 32202 39987 43786
...
The column entries are from A143815, A143816 and A143817.
The Abraham Ungar 1982 article defines H_{n,r}(z) = Sum_{k>=0} z^(nk+r)/(nk+r)! as equation (1). The constant is H_{3,1}(1). In equation (13) H_{3,1}(x) = (exp(x) + 2 * exp(-x/2) * cos(sqrt(3)/2*x - 2*Pi/3))/3. In equation (12) the expression H_{3,1}(x) = (e^x + q_2 e^{q_1 x} + q_1 e^{q_2 x})/3 where q_1 = (-1 + I sqrt(3))/2 and q_2 = (-1 - I sqrt(3))/2 is given for H_{3,2}(x) instead. - Michael Somos, Nov 01 2024

Examples

			1.041865355098909...
		

Crossrefs

Programs

  • Maple
    Digits:=101: evalf(sum(1/(3*n+1)!, n=0..infinity)); # Michal Paulovic, Aug 20 2023
  • Mathematica
    RealDigits[ N[ (-Cos[Sqrt[3]/2] + E^(3/2) + Sqrt[3]*Sin[Sqrt[3]/2])/(3*Sqrt[E]), 105]][[1]] (* Jean-François Alcover, Nov 08 2012 *)
  • PARI
    suminf(n=0,1/(3*n+1)!) \\ Michel Marcus, Aug 20 2023

Formula

Equals (exp(1) + w^2*exp(w) + w*exp(w^2))/3, where w = exp(2*Pi*i/3).
A143819 + A143820 + A143821 = exp(1).
Equals Sum_{n>=0} 1/(3*n+1)!. - Michal Paulovic, Aug 20 2023
Continued fraction: 1 + 1/(24 - 24/(211 - 210/(721 - ... - P(n-1)/((P(n) + 1) - ... )))), where P(n) = (3*n - 1)*(3*n)*(3*n + 1) for n >= 1. Cf. A346441. - Peter Bala, Feb 22 2024
Equals (exp(1) + 2*exp(-1/2)*cos(sqrt(3)/2-2*Pi/3))/3. [Ungar, p.690] - Michael Somos, Nov 01 2024

Extensions

Offset corrected by R. J. Mathar, Feb 05 2009

A332890 Decimal expansion of Sum_{k>=0} 1/(4*k)!.

Original entry on oeis.org

1, 0, 4, 1, 6, 9, 1, 4, 7, 0, 3, 4, 1, 6, 9, 1, 7, 4, 7, 9, 3, 9, 4, 2, 1, 1, 1, 4, 1, 0, 0, 0, 1, 9, 1, 4, 3, 1, 6, 6, 9, 1, 9, 7, 6, 6, 4, 9, 1, 8, 9, 2, 9, 6, 6, 2, 0, 3, 7, 4, 9, 7, 3, 5, 0, 4, 5, 9, 3, 4, 7, 2, 8, 9, 1, 1, 8, 4, 7, 7, 3, 1, 7, 4, 1, 1, 0
Offset: 1

Views

Author

Bernard Schott, Mar 01 2020

Keywords

Comments

For q integer >= 1, Sum_{m>=0} 1/(q*m)! = (1/q) * Sum_{k=1..q} exp(X_k) where X_1, X_2, ..., X_q are the q-th roots of unity.

Examples

			1.0416914703416917479394211141000191431669197664918929...
		

References

  • Serge Francinou, Hervé Gianella, Serge Nicolas, Exercices de Mathématiques, Oraux X-ENS, Analyse 2, problème 3.10 p. 182, Cassini, Paris, 2004.

Crossrefs

Cf. A001113 (Sum 1/k!), A073743 (Sum 1/(2k)!), A143819 (Sum 1/(3k)!), this sequence (Sum 1/(4k)!), A269296 (Sum 1/(5k)!), A332892 (Sum 1/(6k)!), A346441.

Programs

  • Maple
    evalf(1/2 * (cos(1) + cosh(1)), 100);
  • Mathematica
    RealDigits[Sum[1/(4n)!,{n,0,\[Infinity]}],10,120][[1]] (* Harvey P. Dale, Apr 18 2023 *)
  • PARI
    suminf(k=0,(1 + (-1)^k)/((2*k)!))/2 \\ Hugo Pfoertner, Mar 01 2020
    
  • PARI
    suminf(k=0, 1/(4*k)!) \\ Michel Marcus, Mar 02 2020

Formula

Equals (1/2) * (cos(1) + cosh(1)).
Equals (1/2) * Sum_{k>=0} (1 + (-1)^k)/((2*k)!). - Peter Luschny, Mar 01 2020
Sum_{k>=0} (-1)^k / (4*k)! = cos(1/sqrt(2)) * cosh(1/sqrt(2)) = 0.958358132833... - Vaclav Kotesovec, Mar 02 2020
Continued fraction: 1 + 1/(24 - 24/(1681 - 1680/(11881 - ... - P(n-1)/((P(n) + 1) - ... )))), where P(n) = (4*n)*(4*n - 1)*(4*n - 2)*(4*n - 3) for n >= 1. Cf. A346441. - Peter Bala, Feb 22 2024

Extensions

More terms from Hugo Pfoertner, Mar 02 2020

A073746 Decimal expansion of sech(1).

Original entry on oeis.org

6, 4, 8, 0, 5, 4, 2, 7, 3, 6, 6, 3, 8, 8, 5, 3, 9, 9, 5, 7, 4, 9, 7, 7, 3, 5, 3, 2, 2, 6, 1, 5, 0, 3, 2, 3, 1, 0, 8, 4, 8, 9, 3, 1, 2, 0, 7, 1, 9, 4, 2, 0, 2, 3, 0, 3, 7, 8, 6, 5, 3, 3, 7, 3, 1, 8, 7, 1, 7, 5, 9, 5, 6, 4, 6, 7, 1, 2, 8, 3, 0, 2, 8, 0, 8, 5, 4, 7, 8, 5, 3, 0, 7, 8, 9, 2, 8, 9, 2, 3, 8, 4, 8, 4
Offset: 0

Views

Author

Rick L. Shepherd, Aug 07 2002

Keywords

Comments

sech(x) = 2/(e^x + e^(-x)).
By the Lindemann-Weierstrass theorem, this constant is transcendental. - Charles R Greathouse IV, May 14 2019

Examples

			0.64805427366388539957497735322...
		

References

  • Samuel M. Selby (ed.), CRC Basic Mathematical Tables, CRC Press, 1970, p. 218.

Crossrefs

Cf. A068118 (continued fraction), A073743 (cosh(1)=1/A073746), A073742 (sinh(1)), A073744 (tanh(1)), A073745 (csch(1)), A073747 (coth(1)), A122045.

Programs

  • Mathematica
    RealDigits[Sech[1], 10, 100][[1]] (* Amiram Eldar, May 15 2021 *)
  • PARI
    1/cosh(1)

Formula

Equals Sum_{k>=0} E(2*k) / (2*k)!, where E(k) is the k-th Euler number (A122045). - Amiram Eldar, May 15 2021
Showing 1-10 of 42 results. Next