A337725
a(n) = (3*n+1)! * Sum_{k=0..n} 1 / (3*k+1)!.
Original entry on oeis.org
1, 25, 5251, 3780721, 6487717237, 21798729916321, 126737815733490295, 1171057417377450325801, 16160592359808814496053801, 317652603424402057734433512457, 8567090714356123497097671830965291, 307592825008242258039794809418977808065
Offset: 0
Cf.
A000522,
A051396,
A051397,
A087350,
A100089,
A143820,
A330044,
A337726,
A337727,
A337728,
A337729,
A337730.
-
Table[(3 n + 1)! Sum[1/(3 k + 1)!, {k, 0, n}], {n, 0, 11}]
Table[(3 n + 1)! SeriesCoefficient[(Exp[3 x/2] - 2 Sin[Pi/6 - Sqrt[3] x/2])/(3 Exp[x/2] (1 - x^3)), {x, 0, 3 n + 1}], {n, 0, 11}]
Table[Floor[(Exp[3/2] + 2 Sin[(3 Sqrt[3] - Pi)/6])/(3 Sqrt[Exp[1]]) (3 n + 1)!], {n, 0, 11}]
-
a(n) = (3*n+1)!*sum(k=0, n, 1/(3*k+1)!); \\ Michel Marcus, Sep 17 2020
A337727
a(n) = (4*n)! * Sum_{k=0..n} 1 / (4*k)!.
Original entry on oeis.org
1, 25, 42001, 498971881, 21795091762081, 2534333270094778681, 646315807872650838343345, 317599587988620621961919733001, 274101148417699141578015206369183041, 387502275541069630431671657548241448722521, 849931991080760484603611346800010863970028660561
Offset: 0
Cf.
A000522,
A051396,
A051397,
A087350,
A100733,
A330045,
A332890,
A337725,
A337726,
A337728,
A337729,
A337730.
-
Table[(4 n)! Sum[1/(4 k)!, {k, 0, n}], {n, 0, 10}]
Table[(4 n)! SeriesCoefficient[(1/2) (Cos[x] + Cosh[x])/(1 - x^4), {x, 0, 4 n}], {n, 0, 10}]
Table[Floor[(1/2) (Cos[1] + Cosh[1]) (4 n)!], {n, 0, 10}]
-
a(n) = (4*n)!*sum(k=0, n, 1/(4*k)!); \\ Michel Marcus, Sep 17 2020
A337728
a(n) = (4*n+1)! * Sum_{k=0..n} 1 / (4*k+1)!.
Original entry on oeis.org
1, 121, 365905, 6278929801, 358652470233121, 51516840824285500441, 15640512874253077933887601, 8915467710633236496186345872425, 8755702529258688898174686554391144001, 13878488965077362598718732163634314533105081, 33731389859841228248933904149069928786421237268881
Offset: 0
Cf.
A000522,
A051396,
A051397,
A087350,
A330045,
A334363,
A337725,
A337726,
A337727,
A337729,
A337730.
-
Table[(4 n + 1)! Sum[1/(4 k + 1)!, {k, 0, n}], {n, 0, 10}]
Table[(4 n + 1)! SeriesCoefficient[(1/2) (Sin[x] + Sinh[x])/(1 - x^4), {x, 0, 4 n + 1}], {n, 0, 10}]
Table[Floor[(1/2) (Sin[1] + Sinh[1]) (4 n + 1)!], {n, 0, 10}]
-
a(n) = (4*n+1)!*sum(k=0, n, 1/(4*k+1)!); \\ Michel Marcus, Sep 17 2020
A337726
a(n) = (3*n+2)! * Sum_{k=0..n} 1 / (3*k+2)!.
Original entry on oeis.org
1, 61, 20497, 20292031, 44317795705, 180816606476401, 1236785588298582841, 13142083661260741268467, 205016505115667563788085201, 4494781858155895668489979946725, 133764708098719455094261803214536001, 5252940087036713001551661012234828759271
Offset: 0
Cf.
A000522,
A051396,
A051397,
A087350,
A100043,
A143821,
A330044,
A337725,
A337727,
A337728,
A337729,
A337730.
-
Table[(3 n + 2)! Sum[1/(3 k + 2)!, {k, 0, n}], {n, 0, 11}]
Table[(3 n + 2)! SeriesCoefficient[(Exp[3 x/2] - 2 Sin[Sqrt[3] x/2 + Pi/6])/(3 Exp[x/2] (1 - x^3)), {x, 0, 3 n + 2}], {n, 0, 11}]
Table[Floor[(Exp[3/2] - 2 Sin[(3 Sqrt[3] + Pi)/6])/(3 Sqrt[Exp[1]]) (3 n + 2)!], {n, 0, 11}]
-
a(n) = (3*n+2)!*sum(k=0, n, 1/(3*k+2)!); \\ Michel Marcus, Sep 17 2020
A337729
a(n) = (4*n+2)! * Sum_{k=0..n} 1 / (4*k+2)!.
Original entry on oeis.org
1, 361, 1819441, 43710250585, 3210080802962401, 563561785768079119561, 202205968733586788098486801, 132994909755454702268136738753721, 148026526435655214537290625514621562305, 262237873172349351865682580536682974917045801, 704454843460345510903820429747302209179158476142321
Offset: 0
Cf.
A000522,
A051396,
A051397,
A087350,
A330045,
A334364,
A337725,
A337726,
A337727,
A337728,
A337730.
-
Table[(4 n + 2)! Sum[1/(4 k + 2)!, {k, 0, n}], {n, 0, 10}]
Table[(4 n + 2)! SeriesCoefficient[(1/2) (Cosh[x] - Cos[x])/(1 - x^4), {x, 0, 4 n + 2}], {n, 0, 10}]
Table[Floor[(1/2) (Cosh[1] - Cos[1]) (4 n + 2)!], {n, 0, 10}]
-
a(n) = (4*n+2)!*sum(k=0, n, 1/(4*k+2)!); \\ Michel Marcus, Sep 17 2020
A337730
a(n) = (4*n+3)! * Sum_{k=0..n} 1 / (4*k+3)!.
Original entry on oeis.org
1, 841, 6660721, 218205219961, 20298322381652065, 4313799472548696853801, 1816972337837511114820981201, 1372104830641374893468212163747161, 1724241814377177346127894133451232399041, 3403694723384093133512770088891935585284510985
Offset: 0
Cf.
A000522,
A051396,
A051397,
A087350,
A330045,
A334365,
A337725,
A337726,
A337727,
A337728,
A337729.
-
Table[(4 n + 3)! Sum[1/(4 k + 3)!, {k, 0, n}], {n, 0, 9}]
Table[(4 n + 3)! SeriesCoefficient[(1/2) (Sinh[x] - Sin[x])/(1 - x^4), {x, 0, 4 n + 3}], {n, 0, 9}]
Table[Floor[(1/2) (Sinh[1] - Sin[1]) (4 n + 3)!], {n, 0, 9}]
-
a(n) = (4*n+3)!*sum(k=0, n, 1/(4*k+3)!); \\ Michel Marcus, Sep 17 2020
A352659
a(n) = n! * Sum_{k=0..floor(n/3)} 1 / (3*k)!.
Original entry on oeis.org
1, 1, 2, 7, 28, 140, 841, 5887, 47096, 423865, 4238650, 46625150, 559501801, 7273523413, 101829327782, 1527439916731, 24439038667696, 415463657350832, 7478345832314977, 142088570813984563, 2841771416279691260, 59677199741873516461, 1312898394321217362142
Offset: 0
-
Table[n! Sum[1/(3 k)!, {k, 0, Floor[n/3]}], {n, 0, 22}]
nmax = 22; CoefficientList[Series[(Exp[x] + 2 Exp[-x/2] Cos[Sqrt[3] x/2])/(3 (1 - x)), {x, 0, nmax}], x] Range[0, nmax]!
-
a(n) = n! * sum(k=0, n\3, 1/(3*k)!); \\ Michel Marcus, Mar 29 2022
A119831
Number triangle (3n)!/(3k)!.
Original entry on oeis.org
1, 6, 1, 720, 120, 1, 362880, 60480, 504, 1, 479001600, 79833600, 665280, 1320, 1, 1307674368000, 217945728000, 1816214400, 3603600, 2730, 1, 6402373705728000, 1067062284288000, 8892185702400, 17643225600, 13366080, 4896, 1
Offset: 0
Triangle begins
1,
6, 1,
720, 120, 1,
362880, 60480, 504, 1,
479001600, 79833600, 665280, 1320, 1,
1307674368000, 217945728000, 1816214400, 3603600, 2730, 1
-
Flatten[Table[(3n)!/(3k)!,{n,0,10},{k,0,n}]] (* Harvey P. Dale, Jan 19 2013 *)
Showing 1-8 of 8 results.
Comments