A143630 Define E(n) = Sum_{k >= 0} (-1)^floor(k/3)*k^n/k! for n = 0,1,2,.... Then E(n) is an integral linear combination of E(0), E(1) and E(2). This sequence lists the coefficients of E(2).
0, 0, 1, 3, 7, 14, 16, -77, -922, -6660, -41264, -233828, -1218392, -5607225, -19220589, 4397930, 1016675382, 14251497833, 151695504253, 1432992328055, 12527186450276, 102042171190168, 760272520469199, 4849866087637364
Offset: 0
Examples
E(n) as linear combination of E(i), i = 0..2. ==================================== ..E(n)..|.....E(0)....E(1).....E(2). ==================================== ..E(3)..|......-1......-2........3.. ..E(4)..|......-6......-7........7.. ..E(5)..|.....-25.....-23.......14.. ..E(6)..|.....-89.....-80.......16.. ..E(7)..|....-280....-271......-77.. ..E(8)..|....-700....-750.....-922.. ..E(9)..|....-380....-647....-6660.. ..E(10).|...13452...13039...-41264.. ... a(5) = 14 because E(5) = -25*E(0) - 23*E(1) + 14*E(2). a(6) = 16 because E(6) = -89*E(0) - 80*E(1) + 16*E(2).
Links
- Seiichi Manyama, Table of n, a(n) for n = 0..578
- Eric Weisstein's World of Mathematics, Bell Polynomial.
Programs
-
Maple
# Compare with A143817 # M:=24: a:=array(0..100): b:=array(0..100): c:=array(0..100): a[0]:=1: b[0]:=0: c[0]:=0: for n from 1 to M do a[n]:= -add(binomial(n-1,k)*c[k], k=0..n-1); b[n]:= add(binomial(n-1,k)*a[k], k=0..n-1); c[n]:= add(binomial(n-1,k)*b[k], k=0..n-1); end do: A143630:=[seq(c[n], n=0..M)];
-
Mathematica
m = 23; a[0] = 1; b[0] = 0; c[0] = 0; For[n = 1, n <= m, n++, a[n] = -Sum[Binomial[n - 1, k]*c[k], {k, 0, n - 1}]; b[n] = Sum[Binomial[n - 1, k]*a[k], {k, 0, n - 1}]; c[n] = Sum[Binomial[n - 1, k]*b[k], {k, 0, n - 1}]]; A143630 = Table[c[n], {n, 0, m}] (* Jean-François Alcover, Mar 06 2013, after Maple *)
-
PARI
Bell_poly(n, x) = exp(-x)*suminf(k=0, k^n*x^k/k!); a(n) = my(w=(-1+sqrt(3)*I)/2); round(Bell_poly(n, -1)+w*Bell_poly(n, -w)+w^2*Bell_poly(n, -w^2))/3; \\ Seiichi Manyama, Oct 15 2022
Formula
Define three sequences A(n), B(n) and C(n) by the relations: A(n+1) = - Sum_{i = 0..n} binomial(n,i)*C(i), B(n+1) = Sum_{i = 0..n} binomial(n,i)*A(i), C(n+1) = Sum_{i = 0..n} binomial(n,i)*B(i), with initial conditions A(0) = 1, B(0) = C(0) = 0. Then a(n) = C(n). The other sequences are A(n) = A143628 and B(n) = A143631. Compare with A143817.
From Seiichi Manyama, Oct 15 2022: (Start)
a(n) = Sum_{k = 0..floor((n-2)/3)} (-1)^k * Stirling2(n,3*k+2).
a(n) = ( Bell_n(-1) + w * Bell_n(-w) + w^2 * Bell_n(-w^2) )/3, where Bell_n(x) is n-th Bell polynomial and w = exp(2*Pi*i/3). (End)
Comments