A143670 Array of higher spin alternating sign matrices, read by antidiagonals.
1, 1, 1, 1, 2, 1, 1, 7, 3, 1, 1, 42, 26, 4, 1, 1, 429, 628, 70, 5, 1, 1, 7436, 41784, 5102, 155, 6, 1, 1, 218348, 7517457, 1507128, 28005
Offset: 1
Examples
The array begins: ======================================================== ....|.r=0|..r=1.|.....r=2.|.......r=3.|..........r=4.| n=1.|..1.|...1..|......1..|.........1.|...........1..|.A000012 n=2.|..1.|...2..|......3..|.........4.|...........5..|.A000027 n=3.|..1.|...7..|.....26..|........70.|.........155..| n=4.|..1.|..42..|....628..|......5102.|.......28005..| n=5.|..1.|.429..|..41784..|...1507128.|....28226084..| n=6.|..1.|7436..|7517457..|1749710096.|152363972022..| ========================================================
Links
- Roger E. Behrend and Vincent A. Knight, Higher Spin Alternating Sign Matrices, arXiv:0708.2522 [math.CO], 2007.
- Roger E. Behrend, Vincent A. Knight, Higher Spin Alternating sign matrices, El. J. Combinat 14 (2007) #R83
Formula
Apart from the trivial formulas |ASM(0, n)| = 1 (since ASM(0, n) contains only the n X n zero matrix), |ASM(1, r)| = 1 and |ASM(2, r)| = r+1, the only previously- known formula for a special case of |ASM(n, r)| is |ASM(n, 1)| = Sum_{i=0..n-1} (3*i+1)!/(n+1)!.
Extensions
Some terms of the 7th diagonal from R. J. Mathar, Mar 04 2010
Comments