A143692 Permutation of natural numbers: If n is k-th number with an odd number of prime divisors (counted with multiplicity) [i.e., n = A026424(k)], a(n) = 2*k, otherwise, when n is k-th number with an even number of prime divisors [i.e., n = A028260(k)], a(n) = (2*k)-1.
1, 2, 4, 3, 6, 5, 8, 10, 7, 9, 12, 14, 16, 11, 13, 15, 18, 20, 22, 24, 17, 19, 26, 21, 23, 25, 28, 30, 32, 34, 36, 38, 27, 29, 31, 33, 40, 35, 37, 39, 42, 44, 46, 48, 50, 41, 52, 54, 43, 56, 45, 58, 60, 47, 49, 51, 53, 55, 62, 57, 64, 59, 66, 61, 63, 68, 70, 72, 65, 74, 76, 78
Offset: 1
Keywords
Links
Programs
-
Haskell
import Data.List (elemIndex); import Data.Maybe (fromJust) a243692 = (+ 1) . fromJust . (`elemIndex` a143691_list) -- Reinhard Zumkeller, Aug 07 2014
-
Maple
N:= 1000: # to get a(1) to a(N) Odds,Evens:= selectremove(t -> numtheory:-bigomega(t)::odd,[$1..N]): for k from 1 to nops(Odds) do A[Odds[k]]:= 2*k od: for k from 1 to nops(Evens) do A[Evens[k]]:= 2*k-1 od: seq(A[k],k=1..N); # Robert Israel, Jul 27 2014
-
Mathematica
m = 100; odds = Select[Range[m], OddQ[PrimeOmega[#]]&]; evens = Select[Range[m], EvenQ[PrimeOmega[#]]&]; Do[a[odds[[k]]] = 2k, {k, 1, Length[odds]}]; Do[a[evens[[k]]] = 2k-1, {k, 1, Length[evens]}]; Array[a, m] (* Jean-François Alcover, Mar 09 2019, from Maple *)
Formula
Extensions
Name changed by Antti Karttunen, Jul 27 2014
Comments