A143771 a(n) = gcd(k + n/k), where k is over all divisors of n.
2, 3, 4, 1, 6, 1, 8, 3, 2, 1, 12, 1, 14, 3, 8, 1, 18, 1, 20, 3, 2, 1, 24, 1, 2, 3, 4, 1, 30, 1, 32, 3, 2, 1, 12, 1, 38, 3, 8, 1, 42, 1, 44, 3, 2, 1, 48, 1, 2, 3, 4, 1, 54, 1, 8, 3, 2, 1, 60, 1, 62, 3, 8, 1, 6, 1, 68, 3, 2, 1, 72, 1, 74, 3, 4, 1, 6, 1, 80, 3, 2, 1, 84, 1, 2, 3, 8, 1, 90, 1, 4, 3, 2, 1, 24, 1
Offset: 1
Keywords
Examples
a(1) = gcd(1+1) = 2, i.e., the greatest common divisor of a singular set [2]. a(9) = gcd(1+9, 3+3, 9+1) = 2. a(20) = gcd(1+20, 2+10, 4+5, 5+4, 10+2, 20+1) = 3. a(44) = gcd(1+44, 2+22, 4+11, 11+4, 22+2, 44+1) = 3.
Links
- Antti Karttunen, Table of n, a(n) for n = 1..16384 (terms 2..10000 from Michael De Vlieger)
Crossrefs
Programs
-
Maple
A143771 := proc(n) local dvs ; dvs := convert(numtheory[divisors](n),list) ; igcd(seq( op(i,dvs)+n/op(i,dvs), i=1..nops(dvs))) ; end: for n from 2 to 140 do printf("%d,",A143771(n)) ; od: # R. J. Mathar, Sep 05 2008
-
Mathematica
Table[GCD @@ Map[# + n/# &, Divisors@ n], {n, 2, 96}] (* Michael De Vlieger, Oct 30 2017 *)
-
PARI
a(n) = my(d = divisors(n)); gcd(vector(#d, k, d[k]+n/d[k])); \\ Michel Marcus, Oct 05 2015
Extensions
Extended by R. J. Mathar, Sep 05 2008
Term a(1) = 2 prepended and Example-section extended by Antti Karttunen, Mar 29 2021
Comments