cp's OEIS Frontend

This is a front-end for the Online Encyclopedia of Integer Sequences, made by Christian Perfect. The idea is to provide OEIS entries in non-ancient HTML, and then to think about how they're presented visually. The source code is on GitHub.

Showing 1-2 of 2 results.

A233131 Sum of remainders of n modulo all smaller composite numbers.

Original entry on oeis.org

0, 0, 0, 0, 0, 1, 2, 4, 2, 5, 9, 14, 9, 15, 21, 28, 24, 33, 27, 37, 33, 44, 56, 69, 52, 66, 81, 88, 87, 105, 92, 111, 102, 122, 143, 165, 139, 163, 187, 212, 196, 223, 209, 237, 239, 244, 274, 305, 266, 298, 296, 330, 335, 371, 347, 384, 368, 407, 447, 488, 432, 474, 516, 529, 513, 558, 543, 590, 599, 647, 637, 687, 620
Offset: 0

Views

Author

Max Alekseyev, Dec 07 2013

Keywords

Crossrefs

Programs

  • Mathematica
    Table[Total[Mod[n,Select[Range[n-1],CompositeQ]]],{n,0,80}] (* Requires Mathematica version 10 or later *) (* Harvey P. Dale, Oct 01 2018 *)

Formula

a(n) = A004125(n) - A024934(n).

A233344 Numbers k that divide the sum of their remainders modulo all smaller composites (=A233131(k)).

Original entry on oeis.org

1, 2, 3, 4, 23, 53, 374, 613, 225460, 490537, 1748155, 3167982, 9266618, 12543856, 12589961, 27359852, 3418801560, 8824909730, 72988555402
Offset: 1

Views

Author

Max Alekseyev, Dec 07 2013

Keywords

Comments

The prime terms are given by A143853.

Crossrefs

Programs

  • PARI
    s=0; pp=0; for(n=2,10^8, p=factor(n)[,1]; s += (n-2) - pp - sigma(n) +  sum(i=1,#p,p[i]) + if(!ispseudoprime(n),n,pp++;0) + 1; if(s%n==0,print1(n,", ")) )
Showing 1-2 of 2 results.