A143866 Eigentriangle of A027293.
1, 1, 1, 2, 1, 2, 3, 2, 2, 5, 5, 3, 4, 5, 12, 7, 5, 6, 10, 12, 29, 11, 7, 10, 15, 24, 29, 69, 15, 11, 14, 25, 36, 58, 69, 165, 22, 15, 22, 35, 60, 87, 138, 165, 393, 937, 42, 30, 44, 75, 132, 203, 345, 495, 786, 937, 2233, 56, 42, 60, 110, 180, 319, 483, 825, 1179, 1874, 2233, 5322
Offset: 1
Examples
The triangle begins: n \ k 1 2 3 4 5 6 7 8 9 10 11 ... ------------------------------------------- 1: 1 2: 1 1 3: 2 1 2 4: 3 2 2 5 5: 5 3 4 5 12 6: 7 5 6 10 12 29 7: 11 7 10 15 24 29 69 8: 15 11 14 25 36 58 69 165 9: 22 15 22 35 60 87 138 165 393 10: 30 22 30 55 84 145 207 330 393 937 11: 42 30 44 75 132 203 345 495 786 937 2233 ... reformatted and extended by _Wolfdieter Lang_, May 02 2021 Row 4 = (3, 2, 2, 5) = termwise product of (3, 2, 1, 1) and (1, 1, 2, 5) = (3*1, 2*1, 1*2, 1*5).
Formula
Triangle read by rows, A027293 * (A067687 * 0^(n-k)); 1 <= k <= n. (A067687 * 0^(n-k)) = an infinite lower triangular matrix with the INVERT transform of the partition function as the main diagonal: (1, 1, 2, 5, 12, 29, 69, 165, ...); and the rest zeros. Triangle A027293 = n terms of "partition numbers decrescendo"; by rows = termwise product of n terms of partition decrescendo and n terms of A027293: (1, 1, 2, 5, 12, 29, 69, 165, ...).
Comments