cp's OEIS Frontend

This is a front-end for the Online Encyclopedia of Integer Sequences, made by Christian Perfect. The idea is to provide OEIS entries in non-ancient HTML, and then to think about how they're presented visually. The source code is on GitHub.

Showing 1-2 of 2 results.

A067687 Expansion of 1/( 1 - x / Product_{n>=1} (1-x^n) ).

Original entry on oeis.org

1, 1, 2, 5, 12, 29, 69, 165, 393, 937, 2233, 5322, 12683, 30227, 72037, 171680, 409151, 975097, 2323870, 5538294, 13198973, 31456058, 74966710, 178662171, 425791279, 1014754341, 2418382956, 5763538903, 13735781840, 32735391558, 78015643589
Offset: 0

Views

Author

Alford Arnold, Feb 05 2002

Keywords

Comments

Previous name was: Invert transform of right-shifted partition function (A000041).
Sums of the antidiagonals of the array formed by sequences A000007, A000041, A000712, A000716, ... or its transpose A000012, A000027, A000096, A006503, A006504, ....
Row sums of triangle A143866 = (1, 2, 5, 12, 29, 69, 165, ...) and right border of A143866 = (1, 1, 2, 5, 12, ...). - Gary W. Adamson, Sep 04 2008
Starting with offset 1 = A137682 / A000041; i.e. (1, 3, 7, 17, 40, 96, ...) / (1, 2, 3, 5, 7, 11, ...). - Gary W. Adamson, May 01 2009
From L. Edson Jeffery, Mar 16 2011: (Start)
Another approach is the following. Let T be the infinite lower triangular matrix with columns C_k (k=0,1,2,...) such that C_0=A000041 and, for k > 0, such that C_k is the sequence giving the number of partitions of n into parts of k+1 kinds (successive self-convolutions of A000041 yielding A000712, A000716, ...) and shifted down by k rows. Then T begins (ignoring trailing zero entries in the rows)
(1, 0, ... )
(1, 1, 0, ... )
(2, 2, 1, 0, ... )
(3, 5, 3, 1, 0, ... )
(5, 10, 9, 4, 1, 0, ...)
etc., and a(n) is the sum of entries in row n of T. (End)

Examples

			The array begins:
  1,  1,  1,   1,   1,  1,  1, 1, ...
  0,  1,  2,   3,   4,  5,  6, 7, ...
  0,  2,  5,   9,  14, 20, 27, ...
  0,  3, 10,  22,  40, 65, ...
  0,  5, 20,  51, 105, ...
  0,  7, 36, 108, ...
  0, 11, 65, ...
		

Crossrefs

Cf. table A060850.
Antidiagonal sums of A144064.

Programs

  • PARI
    N=66; x='x+O('x^N); et=eta(x); Vec( sum(n=0,N, x^n/et^n ) ) \\ Joerg Arndt, May 08 2009

Formula

a(n) = Sum_{k=1..n} A000041(k-1)*a(n-k). - Vladeta Jovovic, Apr 07 2003
O.g.f.: 1/(1-x*P(x)), P(x) - o.g.f. for number of partitions (A000041). - Vladimir Kruchinin, Aug 10 2010
a(n) ~ c / r^n, where r = A347968 = 0.419600352598356478498775753566700025318... is the root of the equation QPochhammer(r) = r and c = 0.3777957165566422058901624844315414446044096308877617181754... = Log[r]/(Log[(1 - r)*r] + QPolyGamma[1, r] - Log[r]*Derivative[0, 1][QPochhammer][r, r]). - Vaclav Kotesovec, Feb 16 2017, updated Mar 31 2018

Extensions

More terms from Vladeta Jovovic, Apr 07 2003
More terms and better definition from Franklin T. Adams-Watters, Mar 14 2006
New name (using g.f. by Vladimir Kruchinin), Joerg Arndt, Feb 19 2014

A343234 Triangle T read by rows: lower triangular Riordan matrix of the Toeplitz type with first column A067687.

Original entry on oeis.org

1, 1, 1, 2, 1, 1, 5, 2, 1, 1, 12, 5, 2, 1, 1, 29, 12, 5, 2, 1, 1, 69, 29, 12, 5, 2, 1, 1, 165, 69, 29, 12, 5, 2, 1, 1, 393, 165, 69, 29, 12, 5, 2, 1, 1, 937, 393, 165, 69, 29, 12, 5, 2, 1, 1, 2233, 937, 393, 165, 69, 29, 12, 5, 2, 1, 1
Offset: 0

Views

Author

Wolfdieter Lang, Apr 16 2021

Keywords

Comments

This infinite lower triangular Riordan matrix T is the so-called L-eigen-matrix of the infinite lower triangular Riordan matrix A027293 (but with offset 0 for rows and columns). Such eigentriangles have been considered by Paul Barry in the paper given as a link in A186020.
This means that E is the L-eigen-matrix of an infinite lower triangular matrix M if M*E = L*(E - I), with the unit matrix I and the matrix L with elements L(i, j) = delta_{i, j-1} (Kronecker's delta-symbol; first upper diagonal with 1's).
Therefore, this notion is analogous to calling sequence S an L-eigen-sequence of matrix M if M*vec(S) = L.vec(S) (or vec(S) is an eigensequence of M - L with eigenvalue 0), used by Bernstein and Sloane, see the links in A155002.
L*(E - I) is the E matrix after elimination of the main diagonal and then the first row, and starting with offset 0. Because for infinite lower triangular matrices L^{tr}.L = I (tr stands for transposed), this leads to M = L*(I - E^{-1}) or E = (I - L^{tr}*M)^{-1}.
Note that Gary W. Adamson uses a different notion: E is the eigentriangle of a triangle T if the columns of E are the columns j of T multiplied by the sequence elements B_j of B with o.g.f. x/(1 - x*G(x)), with the o.g.f. G(x) of column no. 1 of T. Or E(i, j) = T(i, j)*B(j). In short: sequence B is the L-eigen-sequence of the infinite lower triangular matrix T (but with offset 1): T*vec(B) = L.vec(B). See, e.g., A143866.
Thanks to Gary W. Adamson for motivating my occupation with such eigentriangles and eigensequences.
The first column of the present triangle T is A067687, which is then shifted downwards (Riordan of Toeplitz type).

Examples

			The triangle T begins:
n \ m   0   1   2   3  4  5  6  7  8  9 ...
-----------------------------------------
0:      1
1:      1   1
2:      2   1   1
3:      5   2   1   1
4:     12   5   2   1  1
5:     29  12   5   2  1  1
6:     69  29  12   5  2  1  1
7:    165  69  29  12  5  2  1  1
8:    393 165  69  29 12  5  2  1  1
9:    937 393 165  69 29 12  5  2  1  1
...
		

Crossrefs

Formula

Matrix elements: T(n, m) = A067687(n-m), for n >= m >= 0, and 0 otherwise.
O.g.f. of row polynomials R(n,x) = Sum_{m=0..n} T(n, m)*x^m is
G(z, x) = 1/((1 - z*P(z))*(1 - x*z)), with the o.g.f. P of A000041 (number of partitions).
O.g.f. column m: G_m(x) = x^m/(1 - x*P(x)), for m >= 0.
Showing 1-2 of 2 results.