cp's OEIS Frontend

This is a front-end for the Online Encyclopedia of Integer Sequences, made by Christian Perfect. The idea is to provide OEIS entries in non-ancient HTML, and then to think about how they're presented visually. The source code is on GitHub.

A143926 G.f. satisfies: A(x) = 1 + x*A(x)*A(-x) + x^2*A(x)^2*A(-x)^2.

Original entry on oeis.org

1, 1, 1, 1, 2, 3, 7, 11, 28, 46, 123, 207, 572, 979, 2769, 4797, 13806, 24138, 70414, 123998, 365636, 647615, 1926505, 3428493, 10273870, 18356714, 55349155, 99229015, 300783420, 540807165, 1646828655, 2968468275, 9075674700
Offset: 0

Views

Author

Paul D. Hanna, Sep 06 2008

Keywords

Comments

Bisections form A006605 and A143927;
A006605 is the number of modes of connections of 2n points and
A143927 is the self-convolution of A006605.

Examples

			G.f. A(x) = 1 + x + x^2 + x^3 + 2*x^4 + 3*x^5 + 7*x^6 + 11*x^7 +...
A(x)*A(-x) = 1 + x^2 + 3*x^4 + 11*x^6 + 46*x^8 + 207*x^10 + 979*x^12 +...
A(x)^2*A(-x)^2 = 1 + 2*x^2 + 7*x^4 + 28*x^6 + 123*x^8 + 572*x^10 +...
A(x)^4*A(-x)^4 = 1 + 4*x^2 + 18*x^4 + 84*x^6 + 407*x^8 + 2028*x^10 +...
from this we see that if B(x^2) = A(x)*A(-x)
then B(x) = 1 + x*B(x)^2 + x^2*B(x)^4
and A(x) = 1 + x*B(x^2) + x^2*B(x^2)^2.
		

Crossrefs

Programs

  • Mathematica
    a[n_] := Module[{A = 1 + x, B}, For[i = 0, i <= n, i++, B = A*(A /. x -> -x); A = 1 + x*B + x^2*B^2 + O[x]^(n+1) // Normal]; SeriesCoefficient[A, {x, 0, n}]]; Table[a[n], {n, 0, 32}] (* Jean-François Alcover, Oct 22 2016, adapted from PARI *)
  • PARI
    {a(n)=local(A=1+x+x*O(x^n));for(i=0,n,B=A*subst(A,x,-x);A=1+x*B+x^2*B^2);polcoeff(A,n)}

Formula

Define B(x) by B(x^2) = A(x)*A(-x); then B(x) = 1 + x*B(x)^2 + x^2*B(x)^4 is the g.f. of A006605.
Recurrence: 3*n*(3*n+1)*(3*n+2)*(507*n^4 - 3575*n^3 + 8895*n^2 - 8953*n + 3054)*a(n) = - 12*(4017*n^5 - 20319*n^4 + 31895*n^3 - 17595*n^2 + 2338*n + 384)*a(n-1) + 4*(n-2)*(17745*n^6 - 125125*n^5 + 331891*n^4 - 396335*n^3 + 173912*n^2 + 17532*n - 13140)*a(n-2) - 144*(n-3)*(n-2)*(312*n^3 - 988*n^2 + 407*n + 29)*a(n-3) + 144*(n-4)*(n-3)*(n-2)*(507*n^4 - 1547*n^3 + 1212*n^2 + 140*n - 72)*a(n-4). - Vaclav Kotesovec, Dec 21 2013
a(n) ~ c*d^n/(sqrt(Pi)*n^(3/2)), where d = sqrt(70/27+(26*sqrt(13))/27) = 2.4626418602647616787... is the root of the equation -144 - 140*d^2 + 27*d^4 = 0 and c = 2*sqrt((5+1/sqrt(13))/3)/3 = 0.88421131194123... if n is even, and c = sqrt(1+11/sqrt(13))/3 = 0.670890873659690... if n is odd. - Vaclav Kotesovec, Dec 21 2013