A143927
G.f. satisfies: A(x) = (1 + x*A(x) + x^2*A(x)^2)^2.
Original entry on oeis.org
1, 2, 7, 28, 123, 572, 2769, 13806, 70414, 365636, 1926505, 10273870, 55349155, 300783420, 1646828655, 9075674700, 50304255210, 280248358964, 1568399676946, 8813424968192, 49709017472751, 281306750922072, 1596802663432503
Offset: 0
-
Table[GegenbauerC[n,-2n-2,-1/2]/(n+1),{n,0,12}] (* Emanuele Munarini, Oct 20 2016 *)
n = 20;
A = Sum[a[k] x^k, {k, 0, n}] + x O[x]^n;
Table[a[k], {k, 0, n}] /. Reverse[Solve[LogicalExpand[(1 + x A + x^2 A^2)^2 == A]]] (* Emanuele Munarini, Oct 20 2016 *)
-
makelist(ultraspherical(n,-2*n-2,-1/2)/(n+1),n,0,12); /* Emanuele Munarini, Oct 20 2016 */
-
{a(n)=local(A=1+x+x*O(x^n));for(i=0,n,A=(1+x*A+x^2*A^2)^2);polcoeff(A,n)}
A006605
Number of modes of connections of 2n points.
Original entry on oeis.org
1, 1, 3, 11, 46, 207, 979, 4797, 24138, 123998, 647615, 3428493, 18356714, 99229015, 540807165, 2968468275, 16395456762, 91053897066, 508151297602, 2848290555562, 16028132445156, 90516256568235, 512831902620465, 2914112388802779, 16604034506299314
Offset: 0
- N. J. A. Sloane and Simon Plouffe, The Encyclopedia of Integer Sequences, Academic Press, 1995 (includes this sequence).
- H. N. V. Temperley and D. G. Rogers, A note on Baxter's generalization of the Temperley-Lieb operators, pp. 324-328 of Combinatorial Mathematics (Canberra, 1977), Lect. Notes Math. 686, 1978.
- Alois P. Heinz, Table of n, a(n) for n = 0..400
- Gi-Sang Cheon, Sung-Tae Jin, and Louis W. Shapiro, A combinatorial equivalence relation for formal power series, Linear Algebra and its Applications, Volume 491, 15 February 2016, Pages 123-137.
- Nathan Gabriel, Katherine Peske, Lara Pudwell, and Samuel Tay, Pattern Avoidance in Ternary Trees, J. Int. Seq. 15 (2012) # 12.1.5.
- Hanna Mularczyk, Lattice Paths and Pattern-Avoiding Uniquely Sorted Permutations, arXiv:1908.04025 [math.CO], 2019.
- Simon Plouffe, Approximations of generating functions and a few conjectures, arXiv:0911.4975 [math.NT], 2009, Master's Thesis.
- Lara Pudwell, Pattern avoidance in trees (slides from a talk, mentions many sequences), 2012. [_N. J. A. Sloane_, Jan 03 2013]
- Jun Yan, Lattice paths enumerations weighted by ascent lengths, arXiv:2501.01152 [math.CO], 2025. See p. 13.
- Lin Yang, Yu-Yuan Zhang, and Sheng-Liang Yang, Enumeration of the Motzkin paths above a line of rational slope, Disc. Math. (2024) Vol. 347, Issue 7, 114013.
-
A006605:= func< n | (&+[Binomial(2*n,j-1)*Binomial(j,3*n+2-j)/j: j in [Floor((3*n+2)/2)..2*n+1]]) >;
[A006605(n): n in [0..40]]; // G. C. Greubel, Aug 29 2025
-
series(RootOf(x^2*g^4+x*g^2-g+1, g), x=0,20); # Mark van Hoeij, Nov 16 2011
# second Maple program:
a:= proc(n) option remember; `if`(n<2, 1,
2*((910*n^4 -1085*n^3 +227*n^2 +92*n -24) *a(n-1)
+(936*n^4 -2520*n^3 +1710*n^2 +90*n-216) *a(n-2))/
(3*n *(117*n^3 +36*n^2 -55*n -18)))
end:
seq(a(n), n=0..30); # Alois P. Heinz, Aug 07 2012
-
Table[1/(2*n+1)*Sum[Binomial[j,2*j-2-3*n]*Binomial[2*n+1,j],{j,0,2*n+1}],{n,0,20}] (* Vaclav Kotesovec after Vladimir Kruchinin, Aug 15 2013 *)
-
{a(n)=polcoeff(((1/x)*serreverse(x/(1+x+x^2)^2+x^2*O(x^n)))^(1/2),n)} \\ Paul D. Hanna
-
def A006605(n): return sum(binomial(2*n,j-1)*binomial(j,3*n+2-j)//j for j in range((3*n+2)//2, 2*n+2))
print([A006605(n) for n in range(41)]) # G. C. Greubel, Aug 29 2025
More terms from Pab Ter (pabrlos2(AT)yahoo.com), Nov 20 2005
A233895
G.f. satisfies: A(x) = 1 + x*A(x)*A(-x) + x^2*(A(x)^2 + A(-x)^2).
Original entry on oeis.org
1, 1, 2, 3, 10, 18, 60, 115, 410, 822, 2996, 6174, 22980, 48324, 182328, 389187, 1484410, 3205710, 12329988, 26876586, 104080812, 228606012, 890262984, 1967830254, 7699472676, 17110322908, 67215426440, 150058534620, 591517612616, 1325828841480, 5241992235888
Offset: 0
G.f.: A(x) = 1 + x + 2*x^2 + 3*x^3 + 10*x^4 + 18*x^5 + 60*x^6 + 115*x^7 +...
Related series:
A(x)^2 = 1 + 2*x + 5*x^2 + 10*x^3 + 30*x^4 + 68*x^5 + 205*x^6 + 482*x^7 +...
A(x)*A(-x) = 1 + 3*x^2 + 18*x^4 + 115*x^6 + 822*x^8 + 6174*x^10 +...
A(x)^2+A(-x)^2 = 2 + 10*x^2 + 60*x^4 + 410*x^6 + 2996*x^8 + 22980*x^10 +...
-
{a(n)=local(A=1+x); for(i=1, n, A=1+x*A*subst(A, x, -x)+x^2*(A^2+subst(A^2, x, -x+x*O(x^n))) ); polcoeff(A, n)}
for(n=0, 60, print1(a(n), ", "))
A233896
G.f. satisfies: A(x) = 1 + x*A(x)^2*A(-x)^2 + x^2*(A(x)^2 + A(-x)^2).
Original entry on oeis.org
1, 1, 2, 6, 10, 33, 72, 236, 572, 1964, 4800, 16910, 42354, 150670, 386992, 1390176, 3622696, 13128940, 34580568, 126131776, 335409928, 1229708169, 3295834080, 12137093684, 32738710652, 121016095812, 328220839472, 1217132137132, 3316783066620, 12333770952588
Offset: 0
G.f.: A(x) = 1 + x + 2*x^2 + 6*x^3 + 10*x^4 + 33*x^5 + 72*x^6 + 236*x^7 +...
Related series:
A(x)^2 = 1 + 2*x + 5*x^2 + 16*x^3 + 36*x^4 + 110*x^5 + 286*x^6 + 868*x^7 +...
A(x)*A(-x) = 1 + 3*x^2 + 12*x^4 + 82*x^6 + 664*x^8 + 5479*x^10 + 47568*x^12 +...
A(x)^2*A(-x)^2 = 1 + 6*x^2 + 33*x^4 + 236*x^6 + 1964*x^8 + 16910*x^10 +...
A(x)^2+A(-x)^2 = 2 + 10*x^2 + 72*x^4 + 572*x^6 + 4800*x^8 + 42354*x^10 +...
-
{a(n)=local(A=1+x); for(i=1, n, A=1+x*A^2*subst(A^2, x, -x)+x^2*(A^2+subst(A^2, x, -x+x*O(x^n))) ); polcoeff(A, n)}
for(n=0, 30, print1(a(n), ", "))
Showing 1-4 of 4 results.
Comments