cp's OEIS Frontend

This is a front-end for the Online Encyclopedia of Integer Sequences, made by Christian Perfect. The idea is to provide OEIS entries in non-ancient HTML, and then to think about how they're presented visually. The source code is on GitHub.

Showing 1-4 of 4 results.

A143927 G.f. satisfies: A(x) = (1 + x*A(x) + x^2*A(x)^2)^2.

Original entry on oeis.org

1, 2, 7, 28, 123, 572, 2769, 13806, 70414, 365636, 1926505, 10273870, 55349155, 300783420, 1646828655, 9075674700, 50304255210, 280248358964, 1568399676946, 8813424968192, 49709017472751, 281306750922072, 1596802663432503
Offset: 0

Views

Author

Paul D. Hanna, Sep 08 2008

Keywords

Crossrefs

Programs

  • Mathematica
    Table[GegenbauerC[n,-2n-2,-1/2]/(n+1),{n,0,12}] (* Emanuele Munarini, Oct 20 2016 *)
    n = 20;
    A = Sum[a[k] x^k, {k, 0, n}] + x O[x]^n;
    Table[a[k], {k, 0, n}] /. Reverse[Solve[LogicalExpand[(1 + x A + x^2 A^2)^2 == A]]] (* Emanuele Munarini, Oct 20 2016 *)
  • Maxima
    makelist(ultraspherical(n,-2*n-2,-1/2)/(n+1),n,0,12); /* Emanuele Munarini, Oct 20 2016 */
  • PARI
    {a(n)=local(A=1+x+x*O(x^n));for(i=0,n,A=(1+x*A+x^2*A^2)^2);polcoeff(A,n)}
    

Formula

Self-convolution of A006605.
Bisection of A143926.
a(n) = ((24*n+12)*A006605(n) + (3*n+5)*A006605(n+1))/(13*n+17). - Mark van Hoeij, Jul 14 2010
a(n) = (1/(n+1))*Sum_{j=0..2*n+2} (binomial(j,2*j-3*n-4)*binomial(2*n+2 ,j)). - Vladimir Kruchinin, Dec 24 2010
a(n) = GegenbauerPoly(n,-2n-2,-1/2)/(n+1). - Emanuele Munarini, Oct 20 2016
a(n) = T(2*n+2, n)/(n+1), where T(n,k) = A027907(n,k). - Emanuele Munarini, Oct 20 2016
The g.f. A(x) satisfies 1 + x*A'(x)/A(x) = 1 + 2*x + 10*x^2 + 50*x^3 + 266*x^3 + ..., the g.f. of A027908. - Peter Bala, Aug 03 2023

A006605 Number of modes of connections of 2n points.

Original entry on oeis.org

1, 1, 3, 11, 46, 207, 979, 4797, 24138, 123998, 647615, 3428493, 18356714, 99229015, 540807165, 2968468275, 16395456762, 91053897066, 508151297602, 2848290555562, 16028132445156, 90516256568235, 512831902620465, 2914112388802779, 16604034506299314
Offset: 0

Views

Author

Keywords

Comments

Number of paths of semilength n staying weakly within the 1st quadrant starting at (0,0) and ending on the X-axis using steps (1,1), (1,-1) and (1,3). - David Scambler, Jun 21 2013

References

  • N. J. A. Sloane and Simon Plouffe, The Encyclopedia of Integer Sequences, Academic Press, 1995 (includes this sequence).
  • H. N. V. Temperley and D. G. Rogers, A note on Baxter's generalization of the Temperley-Lieb operators, pp. 324-328 of Combinatorial Mathematics (Canberra, 1977), Lect. Notes Math. 686, 1978.

Crossrefs

Programs

  • Magma
    A006605:= func< n | (&+[Binomial(2*n,j-1)*Binomial(j,3*n+2-j)/j: j in [Floor((3*n+2)/2)..2*n+1]]) >;
    [A006605(n): n in [0..40]]; // G. C. Greubel, Aug 29 2025
    
  • Maple
    series(RootOf(x^2*g^4+x*g^2-g+1, g), x=0,20); # Mark van Hoeij, Nov 16 2011
    # second Maple program:
    a:= proc(n) option remember; `if`(n<2, 1,
           2*((910*n^4 -1085*n^3  +227*n^2 +92*n -24) *a(n-1)
             +(936*n^4 -2520*n^3 +1710*n^2 +90*n-216) *a(n-2))/
          (3*n *(117*n^3 +36*n^2 -55*n -18)))
        end:
    seq(a(n), n=0..30);  # Alois P. Heinz, Aug 07 2012
  • Mathematica
    Table[1/(2*n+1)*Sum[Binomial[j,2*j-2-3*n]*Binomial[2*n+1,j],{j,0,2*n+1}],{n,0,20}] (* Vaclav Kotesovec after Vladimir Kruchinin, Aug 15 2013 *)
  • PARI
    {a(n)=polcoeff(((1/x)*serreverse(x/(1+x+x^2)^2+x^2*O(x^n)))^(1/2),n)} \\ Paul D. Hanna
    
  • SageMath
    def A006605(n): return sum(binomial(2*n,j-1)*binomial(j,3*n+2-j)//j for j in range((3*n+2)//2, 2*n+2))
    print([A006605(n) for n in range(41)]) # G. C. Greubel, Aug 29 2025

Formula

Reference gives explicit formula.
G.f.: A(x) = (1/x)*serreverse(x/G(x)) where G(x) is g.f. of A001006 (Motzkin numbers). G.f. satisfies: A(x)^2 = (1/x)*serreverse( x/(1+x+x^2)^2 ). - Paul D. Hanna, Mar 20 2005
G.f.: revogf is 1/2*(-x+1+(-(1+x)*(-1+3*x))^(1/2))*x. - Simon Plouffe, Master's Thesis, UQAM 1992
a(n) = A026302(n)/(n+1). - Mark van Hoeij, Jul 02 2010
a(n) = (1/(2*n+1))*Sum_{j=0...2*n+1} binomial(j,2*j-2-3*n)*binomial(2*n+1,j). - Vladimir Kruchinin, Dec 24 2010
a(n) ~ sqrt(89 + 277/sqrt(13)) * ((70 + 26*sqrt(13))/27)^n / (9*sqrt(6*Pi)*n^(3/2)). - Vaclav Kotesovec, Aug 15 2013
With interpolated zeros, the o.g.f. = series reversion of x/(1 + x^2 + x^4) = x + x^3 + 3*x^5 + 11*x^7 + 46*x^9 + .... - Peter Bala, Dec 17 2013
Conjecture: 3*n*(3*n+2)*(3*n+1)*a(n) + (-275*n^3 + 475*n^2 - 328*n + 68)*a(n-1) + 2*(2*n-3)*(139*n^2 - 507*n + 398)*a(n-2) + 180*(2*n-5)*(n-2)*(2*n-3)*a(n-3) = 0. - R. J. Mathar, May 30 2014

Extensions

More terms from Pab Ter (pabrlos2(AT)yahoo.com), Nov 20 2005

A233895 G.f. satisfies: A(x) = 1 + x*A(x)*A(-x) + x^2*(A(x)^2 + A(-x)^2).

Original entry on oeis.org

1, 1, 2, 3, 10, 18, 60, 115, 410, 822, 2996, 6174, 22980, 48324, 182328, 389187, 1484410, 3205710, 12329988, 26876586, 104080812, 228606012, 890262984, 1967830254, 7699472676, 17110322908, 67215426440, 150058534620, 591517612616, 1325828841480, 5241992235888
Offset: 0

Views

Author

Paul D. Hanna, Dec 17 2013

Keywords

Examples

			G.f.: A(x) = 1 + x + 2*x^2 + 3*x^3 + 10*x^4 + 18*x^5 + 60*x^6 + 115*x^7 +...
Related series:
A(x)^2 = 1 + 2*x + 5*x^2 + 10*x^3 + 30*x^4 + 68*x^5 + 205*x^6 + 482*x^7 +...
A(x)*A(-x) = 1 + 3*x^2 + 18*x^4 + 115*x^6 + 822*x^8 + 6174*x^10 +...
A(x)^2+A(-x)^2 = 2 + 10*x^2 + 60*x^4 + 410*x^6 + 2996*x^8 + 22980*x^10 +...
		

Crossrefs

Programs

  • PARI
    {a(n)=local(A=1+x); for(i=1, n, A=1+x*A*subst(A, x, -x)+x^2*(A^2+subst(A^2, x, -x+x*O(x^n))) ); polcoeff(A, n)}
    for(n=0, 60, print1(a(n), ", "))

Formula

Recurrence: n*(n+1)*(n+2)*(81*n^6 - 756*n^5 + 2565*n^4 - 3630*n^3 + 1150*n^2 + 1998*n - 1648)*a(n) = - 6*n*(n+1)*(81*n^5 - 1026*n^4 + 4851*n^3 - 10458*n^2 + 10280*n - 3872)*a(n-1) + 12*n*(486*n^8 - 4536*n^7 + 14634*n^6 - 14085*n^5 - 23214*n^4 + 69355*n^3 - 66518*n^2 + 29510*n - 6544)*a(n-2) - 72*(81*n^7 - 297*n^6 - 2124*n^5 + 13899*n^4 - 28141*n^3 + 20794*n^2 + 540*n - 4800)*a(n-3) - 144*(n-3)*(243*n^8 - 2268*n^7 + 7182*n^6 - 5976*n^5 - 13488*n^4 + 33301*n^3 - 30472*n^2 + 20528*n - 10400)*a(n-4) - 864*(n-4)*(n-3)*(n-2)*(108*n^3 - 441*n^2 + 75*n + 200)*a(n-5) - 1728*(n-5)*(n-4)*(n-3)*(81*n^6 - 270*n^5 + 690*n^3 - 695*n^2 + 374*n - 240)*a(n-6). - Vaclav Kotesovec, Dec 21 2013
a(n) ~ c*d^n/n^(3/2), where d = sqrt(24 - 3*I*2^(2/3)*3^(5/6)*(3 + I*sqrt(3))^(1/3) + 6*I*2^(1/3)*3^(1/6)*(3 + I*sqrt(3))^(2/3) - 3*2^(2/3)*(9 + 3*I*sqrt(3))^(1/3)) = 3.12769717670219... is the root of the equation 1728 + 432*d^2 - 72*d^4 + d^6 = 0 and c = sqrt((34 - 4*sqrt(247) * sin(arccsc(494 * sqrt(247)/7687)/3)) / Pi) = 1.281119572461999772722... if n is even, and c = 2*sqrt(6 - sqrt(129) * sin(arcsin(323*sqrt(3/43)/86)/3)) / sqrt(Pi) = 0.970593260725094233562... if n is odd. - Vaclav Kotesovec, Dec 21 2013, updated Mar 18 2024

A233896 G.f. satisfies: A(x) = 1 + x*A(x)^2*A(-x)^2 + x^2*(A(x)^2 + A(-x)^2).

Original entry on oeis.org

1, 1, 2, 6, 10, 33, 72, 236, 572, 1964, 4800, 16910, 42354, 150670, 386992, 1390176, 3622696, 13128940, 34580568, 126131776, 335409928, 1229708169, 3295834080, 12137093684, 32738710652, 121016095812, 328220839472, 1217132137132, 3316783066620, 12333770952588
Offset: 0

Views

Author

Paul D. Hanna, Dec 17 2013

Keywords

Examples

			G.f.: A(x) = 1 + x + 2*x^2 + 6*x^3 + 10*x^4 + 33*x^5 + 72*x^6 + 236*x^7 +...
Related series:
A(x)^2 = 1 + 2*x + 5*x^2 + 16*x^3 + 36*x^4 + 110*x^5 + 286*x^6 + 868*x^7 +...
A(x)*A(-x) = 1 + 3*x^2 + 12*x^4 + 82*x^6 + 664*x^8 + 5479*x^10 + 47568*x^12 +...
A(x)^2*A(-x)^2 = 1 + 6*x^2 + 33*x^4 + 236*x^6 + 1964*x^8 + 16910*x^10 +...
A(x)^2+A(-x)^2 = 2 + 10*x^2 + 72*x^4 + 572*x^6 + 4800*x^8 + 42354*x^10 +...
		

Crossrefs

Programs

  • PARI
    {a(n)=local(A=1+x); for(i=1, n, A=1+x*A^2*subst(A^2, x, -x)+x^2*(A^2+subst(A^2, x, -x+x*O(x^n))) ); polcoeff(A, n)}
    for(n=0, 30, print1(a(n), ", "))
Showing 1-4 of 4 results.