cp's OEIS Frontend

This is a front-end for the Online Encyclopedia of Integer Sequences, made by Christian Perfect. The idea is to provide OEIS entries in non-ancient HTML, and then to think about how they're presented visually. The source code is on GitHub.

Showing 1-10 of 15 results. Next

A027908 a(n) = T(2*n, n), T given by A027907.

Original entry on oeis.org

1, 2, 10, 50, 266, 1452, 8074, 45474, 258570, 1481108, 8533660, 49402850, 287134346, 1674425300, 9792273690, 57407789550, 337281021450, 1985342102964, 11706001102180, 69124774458092, 408737856117916, 2419833655003752, 14341910428953018, 85087759173024870
Offset: 0

Views

Author

Keywords

Comments

Central terms of the triangle in A111808. - Reinhard Zumkeller, Aug 17 2005
Number of paths of semilength n starting at (0,0) and ending on the X-axis using steps (1,1), (1,-1) and (1,3). - David Scambler, Jun 21 2013

Crossrefs

Programs

  • Maple
    ogf := series( RootOf( (144*x^2+140*x-27)*g^4+(18-12*x)*g^2+8*g+1, g), x=0, 20); # Mark van Hoeij, Nov 16 2011
    a := n -> simplify(GegenbauerC(n, -2*n, -1/2)):
    seq(a(n), n=0..23); # Peter Luschny, May 09 2016
  • Mathematica
    Table[Binomial[4 n, n] Hypergeometric2F1[-3 n, -n, 1/2 - 2 n, 1/4], {n, 0, 20}] (* or *) Table[GegenbauerC[3 n, -2 n, -1/2] + KroneckerDelta[n], {n, 0, 20}] (* Vladimir Reshetnikov, May 07 2016 *)
  • Maxima
    makelist(ultraspherical(n,-2*n,-1/2),n,0,12); /* Emanuele Munarini, Oct 18 2016 */

Formula

G.f.: -(g^2+g+1)/(3*g^2+g-1) where g = x times the g.f. of A143927. - Mark van Hoeij, Nov 16 2011
a(n) = GegenbauerC(n, -2*n, -1/2). - Peter Luschny, May 09 2016
From Peter Bala, Jan 26 2020: (Start)
a(n) = [x^(2*n)](1 + x^2 + x^4)^(2*n).
a(n) = Sum_{k = 0..floor(n/2)} C(2*n, n-k)*C(n-k, k).
a(n) = C(2*n,n) * hypergeom([-n/2, (1 - n)/2], [n + 1], 4)
Conjectural: a(n*p^k) == a(n*p^(k-1)) ( mod p^(2*k) ) for all primes p >= 5 and positive integers n and k. (End)
From Peter Bala, Aug 03 2023: (Start)
P-recursive: 3*n*(13*n - 17)*(3*n - 1)*(3*n - 2)*a(n) = 2*(2*n - 1)*(455*n^3 - 1050*n^2 + 691*n - 120)*a(n-1) + 36*(n - 1)*(13*n - 4)*(2*n - 1)*(2*n - 3)*a(n-2) with a(0) = 1 and a(1) = 2.
exp(Sum_{n >= 0} a(n)*x^n/n) = 1 + 2*x + 7*x^2 + 28*x^3 + 123*x^4 + ... is the g.f. of A143927.
a(n) = 2*A344396(n-1) for n >= 1. (End)

A365128 G.f. satisfies A(x) = (1 + x*A(x)*(1 + x*A(x)))^3.

Original entry on oeis.org

1, 3, 15, 88, 567, 3876, 27607, 202653, 1522365, 11647038, 90435804, 710855544, 5645365576, 45228648078, 365109237801, 2966862631856, 24248879149005, 199213507774365, 1644138419038500, 13625326165675698, 113336685917785332, 945931091151789808
Offset: 0

Views

Author

Seiichi Manyama, Aug 23 2023

Keywords

Crossrefs

Programs

  • Maple
    A365128 := proc(n)
        add(binomial(3*(n+1),k) * binomial(k,n-k),k=0..n) ;
        %/(n+1) ;
    end proc:
    seq(A365128(n),n=0..70) ; # R. J. Mathar, Dec 04 2023
  • PARI
    a(n, s=1, t=3) = sum(k=0, n, binomial(t*(n+1), k)*binomial(s*k, n-k))/(n+1);

Formula

If g.f. satisfies A(x) = (1 + x*A(x)*(1 + x*A(x))^s)^t, then a(n) = (1/(n+1)) * Sum_{k=0..n} binomial(t*(n+1),k) * binomial(s*k,n-k).
D-finite with recurrence 205*(5*n+6)*(5*n+2)*(5*n+3)*(5*n+4)*(n+1)*a(n) +9*(-5948592*n^5+11369145*n^4 -5182620*n^3 -351495*n^2+204302*n-6560) *a(n-1) +243*(-801282*n^5 +14391105*n^4 -55889790*n^3 +90254895*n^2 -66199848*n +18182560)*a(n-2) +6561*(3*n-5) *(3*n-4)*(93048*n^3 -579621*n^2 +1227037*n -878874)*a(n-3) +48715425*(n-3) *(3*n-4)*(3*n-7) *(3*n-5)*(3*n-8)*a(n-4)=0. - R. J. Mathar, Dec 04 2023
From Seiichi Manyama, Sep 20 2024: (Start)
G.f.: (1/x) * Series_Reversion( x / (1+x+x^2)^3 ).
G.f.: B(x)^3, where B(x) is the g.f. of A255673. (End)

A143926 G.f. satisfies: A(x) = 1 + x*A(x)*A(-x) + x^2*A(x)^2*A(-x)^2.

Original entry on oeis.org

1, 1, 1, 1, 2, 3, 7, 11, 28, 46, 123, 207, 572, 979, 2769, 4797, 13806, 24138, 70414, 123998, 365636, 647615, 1926505, 3428493, 10273870, 18356714, 55349155, 99229015, 300783420, 540807165, 1646828655, 2968468275, 9075674700
Offset: 0

Views

Author

Paul D. Hanna, Sep 06 2008

Keywords

Comments

Bisections form A006605 and A143927;
A006605 is the number of modes of connections of 2n points and
A143927 is the self-convolution of A006605.

Examples

			G.f. A(x) = 1 + x + x^2 + x^3 + 2*x^4 + 3*x^5 + 7*x^6 + 11*x^7 +...
A(x)*A(-x) = 1 + x^2 + 3*x^4 + 11*x^6 + 46*x^8 + 207*x^10 + 979*x^12 +...
A(x)^2*A(-x)^2 = 1 + 2*x^2 + 7*x^4 + 28*x^6 + 123*x^8 + 572*x^10 +...
A(x)^4*A(-x)^4 = 1 + 4*x^2 + 18*x^4 + 84*x^6 + 407*x^8 + 2028*x^10 +...
from this we see that if B(x^2) = A(x)*A(-x)
then B(x) = 1 + x*B(x)^2 + x^2*B(x)^4
and A(x) = 1 + x*B(x^2) + x^2*B(x^2)^2.
		

Crossrefs

Programs

  • Mathematica
    a[n_] := Module[{A = 1 + x, B}, For[i = 0, i <= n, i++, B = A*(A /. x -> -x); A = 1 + x*B + x^2*B^2 + O[x]^(n+1) // Normal]; SeriesCoefficient[A, {x, 0, n}]]; Table[a[n], {n, 0, 32}] (* Jean-François Alcover, Oct 22 2016, adapted from PARI *)
  • PARI
    {a(n)=local(A=1+x+x*O(x^n));for(i=0,n,B=A*subst(A,x,-x);A=1+x*B+x^2*B^2);polcoeff(A,n)}

Formula

Define B(x) by B(x^2) = A(x)*A(-x); then B(x) = 1 + x*B(x)^2 + x^2*B(x)^4 is the g.f. of A006605.
Recurrence: 3*n*(3*n+1)*(3*n+2)*(507*n^4 - 3575*n^3 + 8895*n^2 - 8953*n + 3054)*a(n) = - 12*(4017*n^5 - 20319*n^4 + 31895*n^3 - 17595*n^2 + 2338*n + 384)*a(n-1) + 4*(n-2)*(17745*n^6 - 125125*n^5 + 331891*n^4 - 396335*n^3 + 173912*n^2 + 17532*n - 13140)*a(n-2) - 144*(n-3)*(n-2)*(312*n^3 - 988*n^2 + 407*n + 29)*a(n-3) + 144*(n-4)*(n-3)*(n-2)*(507*n^4 - 1547*n^3 + 1212*n^2 + 140*n - 72)*a(n-4). - Vaclav Kotesovec, Dec 21 2013
a(n) ~ c*d^n/(sqrt(Pi)*n^(3/2)), where d = sqrt(70/27+(26*sqrt(13))/27) = 2.4626418602647616787... is the root of the equation -144 - 140*d^2 + 27*d^4 = 0 and c = 2*sqrt((5+1/sqrt(13))/3)/3 = 0.88421131194123... if n is even, and c = sqrt(1+11/sqrt(13))/3 = 0.670890873659690... if n is odd. - Vaclav Kotesovec, Dec 21 2013

A371574 G.f. satisfies A(x) = ( 1 + x*A(x)^(5/2) * (1 + x*A(x)) )^2.

Original entry on oeis.org

1, 2, 13, 106, 986, 9902, 104641, 1146654, 12910674, 148462310, 1736178005, 20584835962, 246874102771, 2989580399330, 36504669373240, 448960388422126, 5556453433915920, 69150493021938224, 864833621158491876, 10863849369160145222, 137011477676531989664
Offset: 0

Views

Author

Seiichi Manyama, Mar 28 2024

Keywords

Crossrefs

Programs

  • PARI
    a(n, r=2, s=1, t=5, u=2) = r*sum(k=0, n, binomial(t*k+u*(n-k)+r, k)*binomial(s*k, n-k)/(t*k+u*(n-k)+r));

Formula

If g.f. satisfies A(x) = ( 1 + x*A(x)^(t/r) * (1 + x*A(x)^(u/r))^s )^r, then a(n) = r * Sum_{k=0..n} binomial(t*k+u*(n-k)+r,k) * binomial(s*k,n-k)/(t*k+u*(n-k)+r).
G.f.: A(x) = B(x)^2 where B(x) is the g.f. of A365186.

A027913 T(n,[ n/2 ]), T given by A027907.

Original entry on oeis.org

1, 1, 2, 3, 10, 15, 50, 77, 266, 414, 1452, 2277, 8074, 12727, 45474, 71955, 258570, 410346, 1481108, 2355962, 8533660, 13599915, 49402850, 78855339, 287134346, 458917850, 1674425300, 2679183405, 9792273690, 15683407785
Offset: 0

Views

Author

Keywords

Comments

The median coefficient in the expansion of (1 + x + x^2)^n. - Vladimir Reshetnikov, Nov 21 2020

Crossrefs

Programs

  • Maple
    seq(simplify(GegenbauerC(floor(n/2),-n,-1/2)), n=0..100); # Robert Israel, Oct 20 2016
  • Mathematica
    Table[GegenbauerC[Floor[n/2], -n, -1/2] + KroneckerDelta[n, 0], {n, 0,
    100}] (* Emanuele Munarini, Oct 20 2016 *)
  • Maxima
    makelist(ultraspherical(floor(n/2),-n,-1/2),n,0,12); /* Emanuele Munarini, Oct 18 2016 */

Formula

a(n) = GegenbauerC(floor(n/2), -n, -1/2). - Emanuele Munarini, Oct 18 2016
G.f.: g(t) = (1+(t+t^2)*A(t^2)+t^4*A(t^2)^2)/(1-t^2*A(t^2)-3*t^4*A(t^2)^2), where A(t) is the g.f. of A143927 and satisfies A(t) = [1 + x*A(t) + t^2*A(t)^2]^2. - Emanuele Munarini, Oct 20 2016

A369477 Expansion of (1/x) * Series_Reversion( x / ((1+x) * (1+x+x^2)^2) ).

Original entry on oeis.org

1, 3, 14, 77, 464, 2964, 19717, 135131, 947549, 6765642, 49022225, 359545750, 2664127354, 19913283809, 149968276974, 1136856855549, 8668000962927, 66428474900907, 511414514214628, 3953420853213504, 30674783555852576, 238808419235022293, 1864869207177530320
Offset: 0

Views

Author

Seiichi Manyama, Jan 23 2024

Keywords

Crossrefs

Programs

  • PARI
    my(N=30, x='x+O('x^N)); Vec(serreverse(x/((1+x)*(1+x+x^2)^2))/x)
    
  • PARI
    a(n, s=2, t=2, u=1) = sum(k=0, n\s, binomial(t*(n+1), k)*binomial((t+u)*(n+1)-k, n-s*k))/(n+1);

Formula

a(n) = (1/(n+1)) * Sum_{k=0..floor(n/2)} binomial(2*n+2,k) * binomial(3*n-k+3,n-2*k).

A378292 Square array T(n,k), n >= 0, k >= 0, read by antidiagonals downwards, where T(n,0) = 0^n and T(n,k) = k * Sum_{r=0..n} binomial(2*n+k,r) * binomial(r,n-r)/(2*n+k) for k > 0.

Original entry on oeis.org

1, 1, 0, 1, 1, 0, 1, 2, 3, 0, 1, 3, 7, 11, 0, 1, 4, 12, 28, 46, 0, 1, 5, 18, 52, 123, 207, 0, 1, 6, 25, 84, 240, 572, 979, 0, 1, 7, 33, 125, 407, 1155, 2769, 4797, 0, 1, 8, 42, 176, 635, 2028, 5733, 13806, 24138, 0, 1, 9, 52, 238, 936, 3276, 10332, 29136, 70414, 123998, 0
Offset: 0

Views

Author

Seiichi Manyama, Nov 21 2024

Keywords

Examples

			Square array begins:
  1,   1,    1,    1,     1,     1,     1, ...
  0,   1,    2,    3,     4,     5,     6, ...
  0,   3,    7,   12,    18,    25,    33, ...
  0,  11,   28,   52,    84,   125,   176, ...
  0,  46,  123,  240,   407,   635,   936, ...
  0, 207,  572, 1155,  2028,  3276,  4998, ...
  0, 979, 2769, 5733, 10332, 17140, 26860, ...
		

Crossrefs

Columns k=0..2 give A000007, A006605, A143927.

Programs

  • PARI
    T(n, k, t=2, u=2) = if(k==0, 0^n, k*sum(r=0, n, binomial(t*r+u*(n-r)+k, r)*binomial(r, n-r)/(t*r+u*(n-r)+k)));
    matrix(7, 7, n, k, T(n-1, k-1))

Formula

G.f. A_k(x) of column k satisfies A_k(x) = ( 1 + x * A_k(x)^(2/k) * (1 + x * A_k(x)^(2/k)) )^k for k > 0.
G.f. of column k: B(x)^k where B(x) is the g.f. of A006605.
B(x)^k = B(x)^(k-1) + x * B(x)^(k+1) + x^2 * B(x)^(k+3). So T(n,k) = T(n,k-1) + T(n-1,k+1) + T(n-2,k+3) for n > 1.

A369478 Expansion of (1/x) * Series_Reversion( x / ((1+x)^2 * (1+x+x^2)^2) ).

Original entry on oeis.org

1, 4, 24, 170, 1320, 10868, 93197, 823484, 7445184, 68545882, 640446224, 6057249180, 57878746750, 557903174040, 5418441862824, 52971933934834, 520869559359424, 5147999004530720, 51113415228327827, 509583784051748692, 5099262428810825568
Offset: 0

Views

Author

Seiichi Manyama, Jan 23 2024

Keywords

Crossrefs

Programs

  • PARI
    my(N=30, x='x+O('x^N)); Vec(serreverse(x/((1+x)^2*(1+x+x^2)^2))/x)
    
  • PARI
    a(n, s=2, t=2, u=2) = sum(k=0, n\s, binomial(t*(n+1), k)*binomial((t+u)*(n+1)-k, n-s*k))/(n+1);

Formula

a(n) = (1/(n+1)) * Sum_{k=0..floor(n/2)} binomial(2*n+2,k) * binomial(4*n-k+4,n-2*k).

A371575 G.f. satisfies A(x) = ( 1 + x*A(x)^3 * (1 + x*A(x)) )^2.

Original entry on oeis.org

1, 2, 15, 144, 1587, 18942, 238301, 3111788, 41779164, 573127760, 7998164674, 113189243386, 1620583793262, 23431706243230, 341654376602948, 5017986762425680, 74170837061591036, 1102479579201183898, 16469074050937364044, 247115476148847822586
Offset: 0

Views

Author

Seiichi Manyama, Mar 28 2024

Keywords

Crossrefs

Programs

  • PARI
    a(n, r=2, s=1, t=6, u=2) = r*sum(k=0, n, binomial(t*k+u*(n-k)+r, k)*binomial(s*k, n-k)/(t*k+u*(n-k)+r));

Formula

If g.f. satisfies A(x) = ( 1 + x*A(x)^(t/r) * (1 + x*A(x)^(u/r))^s )^r, then a(n) = r * Sum_{k=0..n} binomial(t*k+u*(n-k)+r,k) * binomial(s*k,n-k)/(t*k+u*(n-k)+r).

A027910 T(2n,n-2), T given by A027907.

Original entry on oeis.org

1, 6, 36, 210, 1221, 7098, 41328, 241128, 1409895, 8260934, 48497064, 285219090, 1680166215, 9912297150, 58558256496, 346371955776, 2051126447742, 12158963346852, 72147074769640, 428476010502582, 2546776668682323, 15149061841758174, 90175327717962024
Offset: 2

Views

Author

Keywords

Comments

a(n) is also the number of lattice paths from (0,0) to (2n-1,n-2) taking north and east steps avoiding north^{>=3}. - Shanzhen Gao, Apr 20 2010

Programs

  • Maple
    a:= proc(n) option remember; `if`(n<3, n*(n-1)/2,
          (14*(2*n-1)*(65*n^3-120*n^2+37*n+6) *a(n-1)
          +36*(n-1)*(2*n-1)*(2*n-3)*(13*n+2) *a(n-2))/
          (3*(13*n-11)*(n-2)*(3*n+2)*(3*n+1)))
        end:
    seq(a(n), n=2..25);  # Alois P. Heinz, Aug 07 2013

Formula

a(n) = Sum_{i=0..floor((2*n-3)/2)} C(2*n,n-2-i)*C(n-2-i,i). Shanzhen Gao, Apr 20 2010
G.f.: -g^2*(g^2+g+1)/(3*g^2+g-1) where g = x times the g.f. of A143927. - Mark van Hoeij, Nov 16 2011
a(n) ~ sqrt((221-29*sqrt(13))/78) * ((70+26*sqrt(13))/27)^n/(9*sqrt(Pi*n)). - Vaclav Kotesovec, Aug 25 2014
Showing 1-10 of 15 results. Next