A027908
a(n) = T(2*n, n), T given by A027907.
Original entry on oeis.org
1, 2, 10, 50, 266, 1452, 8074, 45474, 258570, 1481108, 8533660, 49402850, 287134346, 1674425300, 9792273690, 57407789550, 337281021450, 1985342102964, 11706001102180, 69124774458092, 408737856117916, 2419833655003752, 14341910428953018, 85087759173024870
Offset: 0
-
ogf := series( RootOf( (144*x^2+140*x-27)*g^4+(18-12*x)*g^2+8*g+1, g), x=0, 20); # Mark van Hoeij, Nov 16 2011
a := n -> simplify(GegenbauerC(n, -2*n, -1/2)):
seq(a(n), n=0..23); # Peter Luschny, May 09 2016
-
Table[Binomial[4 n, n] Hypergeometric2F1[-3 n, -n, 1/2 - 2 n, 1/4], {n, 0, 20}] (* or *) Table[GegenbauerC[3 n, -2 n, -1/2] + KroneckerDelta[n], {n, 0, 20}] (* Vladimir Reshetnikov, May 07 2016 *)
-
makelist(ultraspherical(n,-2*n,-1/2),n,0,12); /* Emanuele Munarini, Oct 18 2016 */
A365128
G.f. satisfies A(x) = (1 + x*A(x)*(1 + x*A(x)))^3.
Original entry on oeis.org
1, 3, 15, 88, 567, 3876, 27607, 202653, 1522365, 11647038, 90435804, 710855544, 5645365576, 45228648078, 365109237801, 2966862631856, 24248879149005, 199213507774365, 1644138419038500, 13625326165675698, 113336685917785332, 945931091151789808
Offset: 0
-
A365128 := proc(n)
add(binomial(3*(n+1),k) * binomial(k,n-k),k=0..n) ;
%/(n+1) ;
end proc:
seq(A365128(n),n=0..70) ; # R. J. Mathar, Dec 04 2023
-
a(n, s=1, t=3) = sum(k=0, n, binomial(t*(n+1), k)*binomial(s*k, n-k))/(n+1);
A143926
G.f. satisfies: A(x) = 1 + x*A(x)*A(-x) + x^2*A(x)^2*A(-x)^2.
Original entry on oeis.org
1, 1, 1, 1, 2, 3, 7, 11, 28, 46, 123, 207, 572, 979, 2769, 4797, 13806, 24138, 70414, 123998, 365636, 647615, 1926505, 3428493, 10273870, 18356714, 55349155, 99229015, 300783420, 540807165, 1646828655, 2968468275, 9075674700
Offset: 0
G.f. A(x) = 1 + x + x^2 + x^3 + 2*x^4 + 3*x^5 + 7*x^6 + 11*x^7 +...
A(x)*A(-x) = 1 + x^2 + 3*x^4 + 11*x^6 + 46*x^8 + 207*x^10 + 979*x^12 +...
A(x)^2*A(-x)^2 = 1 + 2*x^2 + 7*x^4 + 28*x^6 + 123*x^8 + 572*x^10 +...
A(x)^4*A(-x)^4 = 1 + 4*x^2 + 18*x^4 + 84*x^6 + 407*x^8 + 2028*x^10 +...
from this we see that if B(x^2) = A(x)*A(-x)
then B(x) = 1 + x*B(x)^2 + x^2*B(x)^4
and A(x) = 1 + x*B(x^2) + x^2*B(x^2)^2.
-
a[n_] := Module[{A = 1 + x, B}, For[i = 0, i <= n, i++, B = A*(A /. x -> -x); A = 1 + x*B + x^2*B^2 + O[x]^(n+1) // Normal]; SeriesCoefficient[A, {x, 0, n}]]; Table[a[n], {n, 0, 32}] (* Jean-François Alcover, Oct 22 2016, adapted from PARI *)
-
{a(n)=local(A=1+x+x*O(x^n));for(i=0,n,B=A*subst(A,x,-x);A=1+x*B+x^2*B^2);polcoeff(A,n)}
A371574
G.f. satisfies A(x) = ( 1 + x*A(x)^(5/2) * (1 + x*A(x)) )^2.
Original entry on oeis.org
1, 2, 13, 106, 986, 9902, 104641, 1146654, 12910674, 148462310, 1736178005, 20584835962, 246874102771, 2989580399330, 36504669373240, 448960388422126, 5556453433915920, 69150493021938224, 864833621158491876, 10863849369160145222, 137011477676531989664
Offset: 0
-
a(n, r=2, s=1, t=5, u=2) = r*sum(k=0, n, binomial(t*k+u*(n-k)+r, k)*binomial(s*k, n-k)/(t*k+u*(n-k)+r));
Original entry on oeis.org
1, 1, 2, 3, 10, 15, 50, 77, 266, 414, 1452, 2277, 8074, 12727, 45474, 71955, 258570, 410346, 1481108, 2355962, 8533660, 13599915, 49402850, 78855339, 287134346, 458917850, 1674425300, 2679183405, 9792273690, 15683407785
Offset: 0
-
seq(simplify(GegenbauerC(floor(n/2),-n,-1/2)), n=0..100); # Robert Israel, Oct 20 2016
-
Table[GegenbauerC[Floor[n/2], -n, -1/2] + KroneckerDelta[n, 0], {n, 0,
100}] (* Emanuele Munarini, Oct 20 2016 *)
-
makelist(ultraspherical(floor(n/2),-n,-1/2),n,0,12); /* Emanuele Munarini, Oct 18 2016 */
A369477
Expansion of (1/x) * Series_Reversion( x / ((1+x) * (1+x+x^2)^2) ).
Original entry on oeis.org
1, 3, 14, 77, 464, 2964, 19717, 135131, 947549, 6765642, 49022225, 359545750, 2664127354, 19913283809, 149968276974, 1136856855549, 8668000962927, 66428474900907, 511414514214628, 3953420853213504, 30674783555852576, 238808419235022293, 1864869207177530320
Offset: 0
-
my(N=30, x='x+O('x^N)); Vec(serreverse(x/((1+x)*(1+x+x^2)^2))/x)
-
a(n, s=2, t=2, u=1) = sum(k=0, n\s, binomial(t*(n+1), k)*binomial((t+u)*(n+1)-k, n-s*k))/(n+1);
A378292
Square array T(n,k), n >= 0, k >= 0, read by antidiagonals downwards, where T(n,0) = 0^n and T(n,k) = k * Sum_{r=0..n} binomial(2*n+k,r) * binomial(r,n-r)/(2*n+k) for k > 0.
Original entry on oeis.org
1, 1, 0, 1, 1, 0, 1, 2, 3, 0, 1, 3, 7, 11, 0, 1, 4, 12, 28, 46, 0, 1, 5, 18, 52, 123, 207, 0, 1, 6, 25, 84, 240, 572, 979, 0, 1, 7, 33, 125, 407, 1155, 2769, 4797, 0, 1, 8, 42, 176, 635, 2028, 5733, 13806, 24138, 0, 1, 9, 52, 238, 936, 3276, 10332, 29136, 70414, 123998, 0
Offset: 0
Square array begins:
1, 1, 1, 1, 1, 1, 1, ...
0, 1, 2, 3, 4, 5, 6, ...
0, 3, 7, 12, 18, 25, 33, ...
0, 11, 28, 52, 84, 125, 176, ...
0, 46, 123, 240, 407, 635, 936, ...
0, 207, 572, 1155, 2028, 3276, 4998, ...
0, 979, 2769, 5733, 10332, 17140, 26860, ...
-
T(n, k, t=2, u=2) = if(k==0, 0^n, k*sum(r=0, n, binomial(t*r+u*(n-r)+k, r)*binomial(r, n-r)/(t*r+u*(n-r)+k)));
matrix(7, 7, n, k, T(n-1, k-1))
A369478
Expansion of (1/x) * Series_Reversion( x / ((1+x)^2 * (1+x+x^2)^2) ).
Original entry on oeis.org
1, 4, 24, 170, 1320, 10868, 93197, 823484, 7445184, 68545882, 640446224, 6057249180, 57878746750, 557903174040, 5418441862824, 52971933934834, 520869559359424, 5147999004530720, 51113415228327827, 509583784051748692, 5099262428810825568
Offset: 0
-
my(N=30, x='x+O('x^N)); Vec(serreverse(x/((1+x)^2*(1+x+x^2)^2))/x)
-
a(n, s=2, t=2, u=2) = sum(k=0, n\s, binomial(t*(n+1), k)*binomial((t+u)*(n+1)-k, n-s*k))/(n+1);
A371575
G.f. satisfies A(x) = ( 1 + x*A(x)^3 * (1 + x*A(x)) )^2.
Original entry on oeis.org
1, 2, 15, 144, 1587, 18942, 238301, 3111788, 41779164, 573127760, 7998164674, 113189243386, 1620583793262, 23431706243230, 341654376602948, 5017986762425680, 74170837061591036, 1102479579201183898, 16469074050937364044, 247115476148847822586
Offset: 0
-
a(n, r=2, s=1, t=6, u=2) = r*sum(k=0, n, binomial(t*k+u*(n-k)+r, k)*binomial(s*k, n-k)/(t*k+u*(n-k)+r));
Original entry on oeis.org
1, 6, 36, 210, 1221, 7098, 41328, 241128, 1409895, 8260934, 48497064, 285219090, 1680166215, 9912297150, 58558256496, 346371955776, 2051126447742, 12158963346852, 72147074769640, 428476010502582, 2546776668682323, 15149061841758174, 90175327717962024
Offset: 2
-
a:= proc(n) option remember; `if`(n<3, n*(n-1)/2,
(14*(2*n-1)*(65*n^3-120*n^2+37*n+6) *a(n-1)
+36*(n-1)*(2*n-1)*(2*n-3)*(13*n+2) *a(n-2))/
(3*(13*n-11)*(n-2)*(3*n+2)*(3*n+1)))
end:
seq(a(n), n=2..25); # Alois P. Heinz, Aug 07 2013
Showing 1-10 of 15 results.
Comments