cp's OEIS Frontend

This is a front-end for the Online Encyclopedia of Integer Sequences, made by Christian Perfect. The idea is to provide OEIS entries in non-ancient HTML, and then to think about how they're presented visually. The source code is on GitHub.

Showing 1-2 of 2 results.

A370160 Coefficient of x^n in the expansion of ( (1+x)^2 * (1+x+x^2)^2 )^n.

Original entry on oeis.org

1, 4, 32, 286, 2688, 26004, 256322, 2559960, 25816576, 262307824, 2681024032, 27534988936, 283926200706, 2937573629800, 30480431060160, 317053438632786, 3305105501423616, 34519689280675808, 361146528603877520, 3784045825018539968, 39702608870540290688
Offset: 0

Views

Author

Seiichi Manyama, Feb 11 2024

Keywords

Crossrefs

Programs

  • Mathematica
    a[n_]:=SeriesCoefficient[((1+x)^2*(1+x+x^2)^2)^n,{x,0,n}]; Array[a,21,0] (* Stefano Spezia, Apr 30 2024 *)
  • PARI
    a(n, s=2, t=2, u=2) = sum(k=0, n\s, binomial(t*n, k)*binomial((t+u)*n-k, n-s*k));

Formula

a(n) = Sum_{k=0..floor(n/2)} binomial(2*n,k) * binomial(4*n-k,n-2*k).
The g.f. exp( Sum_{k>=1} a(k) * x^k/k ) has integer coefficients and equals (1/x) * Series_Reversion( x / ((1+x)^2 * (1+x+x^2)^2) ). See A369478.

A369477 Expansion of (1/x) * Series_Reversion( x / ((1+x) * (1+x+x^2)^2) ).

Original entry on oeis.org

1, 3, 14, 77, 464, 2964, 19717, 135131, 947549, 6765642, 49022225, 359545750, 2664127354, 19913283809, 149968276974, 1136856855549, 8668000962927, 66428474900907, 511414514214628, 3953420853213504, 30674783555852576, 238808419235022293, 1864869207177530320
Offset: 0

Views

Author

Seiichi Manyama, Jan 23 2024

Keywords

Crossrefs

Programs

  • PARI
    my(N=30, x='x+O('x^N)); Vec(serreverse(x/((1+x)*(1+x+x^2)^2))/x)
    
  • PARI
    a(n, s=2, t=2, u=1) = sum(k=0, n\s, binomial(t*(n+1), k)*binomial((t+u)*(n+1)-k, n-s*k))/(n+1);

Formula

a(n) = (1/(n+1)) * Sum_{k=0..floor(n/2)} binomial(2*n+2,k) * binomial(3*n-k+3,n-2*k).
Showing 1-2 of 2 results.