cp's OEIS Frontend

This is a front-end for the Online Encyclopedia of Integer Sequences, made by Christian Perfect. The idea is to provide OEIS entries in non-ancient HTML, and then to think about how they're presented visually. The source code is on GitHub.

Showing 1-4 of 4 results.

A027908 a(n) = T(2*n, n), T given by A027907.

Original entry on oeis.org

1, 2, 10, 50, 266, 1452, 8074, 45474, 258570, 1481108, 8533660, 49402850, 287134346, 1674425300, 9792273690, 57407789550, 337281021450, 1985342102964, 11706001102180, 69124774458092, 408737856117916, 2419833655003752, 14341910428953018, 85087759173024870
Offset: 0

Views

Author

Keywords

Comments

Central terms of the triangle in A111808. - Reinhard Zumkeller, Aug 17 2005
Number of paths of semilength n starting at (0,0) and ending on the X-axis using steps (1,1), (1,-1) and (1,3). - David Scambler, Jun 21 2013

Crossrefs

Programs

  • Maple
    ogf := series( RootOf( (144*x^2+140*x-27)*g^4+(18-12*x)*g^2+8*g+1, g), x=0, 20); # Mark van Hoeij, Nov 16 2011
    a := n -> simplify(GegenbauerC(n, -2*n, -1/2)):
    seq(a(n), n=0..23); # Peter Luschny, May 09 2016
  • Mathematica
    Table[Binomial[4 n, n] Hypergeometric2F1[-3 n, -n, 1/2 - 2 n, 1/4], {n, 0, 20}] (* or *) Table[GegenbauerC[3 n, -2 n, -1/2] + KroneckerDelta[n], {n, 0, 20}] (* Vladimir Reshetnikov, May 07 2016 *)
  • Maxima
    makelist(ultraspherical(n,-2*n,-1/2),n,0,12); /* Emanuele Munarini, Oct 18 2016 */

Formula

G.f.: -(g^2+g+1)/(3*g^2+g-1) where g = x times the g.f. of A143927. - Mark van Hoeij, Nov 16 2011
a(n) = GegenbauerC(n, -2*n, -1/2). - Peter Luschny, May 09 2016
From Peter Bala, Jan 26 2020: (Start)
a(n) = [x^(2*n)](1 + x^2 + x^4)^(2*n).
a(n) = Sum_{k = 0..floor(n/2)} C(2*n, n-k)*C(n-k, k).
a(n) = C(2*n,n) * hypergeom([-n/2, (1 - n)/2], [n + 1], 4)
Conjectural: a(n*p^k) == a(n*p^(k-1)) ( mod p^(2*k) ) for all primes p >= 5 and positive integers n and k. (End)
From Peter Bala, Aug 03 2023: (Start)
P-recursive: 3*n*(13*n - 17)*(3*n - 1)*(3*n - 2)*a(n) = 2*(2*n - 1)*(455*n^3 - 1050*n^2 + 691*n - 120)*a(n-1) + 36*(n - 1)*(13*n - 4)*(2*n - 1)*(2*n - 3)*a(n-2) with a(0) = 1 and a(1) = 2.
exp(Sum_{n >= 0} a(n)*x^n/n) = 1 + 2*x + 7*x^2 + 28*x^3 + 123*x^4 + ... is the g.f. of A143927.
a(n) = 2*A344396(n-1) for n >= 1. (End)

A370159 Coefficient of x^n in the expansion of ( (1+x) * (1+x+x^2)^2 )^n.

Original entry on oeis.org

1, 3, 19, 132, 963, 7228, 55264, 428067, 3347843, 26378079, 209065644, 1664967747, 13312423056, 106798422942, 859244421187, 6930167382832, 56015610380931, 453628706358333, 3679805451367471, 29895358350622638, 243204082036270588, 1980931117038586824
Offset: 0

Views

Author

Seiichi Manyama, Feb 11 2024

Keywords

Crossrefs

Programs

  • Mathematica
    a[n_]:=SeriesCoefficient[((1+x)*(1+x+x^2)^2)^n,{x,0,n}]; Array[a,22,0] (* Stefano Spezia, Apr 30 2024 *)
  • PARI
    a(n, s=2, t=2, u=1) = sum(k=0, n\s, binomial(t*n, k)*binomial((t+u)*n-k, n-s*k));

Formula

a(n) = Sum_{k=0..floor(n/2)} binomial(2*n,k) * binomial(3*n-k,n-2*k).
The g.f. exp( Sum_{k>=1} a(k) * x^k/k ) has integer coefficients and equals (1/x) * Series_Reversion( x / ((1+x) * (1+x+x^2)^2) ). See A369477.

A370195 Coefficient of x^n in the expansion of ( (1+x)^2 * (1+x^2)^2 )^n.

Original entry on oeis.org

1, 2, 10, 56, 322, 1902, 11440, 69680, 428418, 2653292, 16527910, 103443144, 649964176, 4097464490, 25904239560, 164168677056, 1042651014018, 6634470805556, 42286359318364, 269925368946896, 1725325033144622, 11041442722096094, 70739175615642016
Offset: 0

Views

Author

Seiichi Manyama, Feb 11 2024

Keywords

Crossrefs

Programs

  • Mathematica
    a[n_]:=SeriesCoefficient[((1+x)^2*(1+x^2)^2)^n,{x,0,n}]; Array[a,23,0] (* Stefano Spezia, Apr 30 2024 *)
  • PARI
    a(n, s=2, t=2, u=2) = sum(k=0, n\s, binomial(t*n, k)*binomial(u*n, n-s*k));

Formula

a(n) = Sum_{k=0..floor(n/2)} binomial(2*n,k) * binomial(2*n,n-2*k).
The g.f. exp( Sum_{k>=1} a(k) * x^k/k ) has integer coefficients and equals (1/x) * Series_Reversion( x / ((1+x)^2 * (1+x^2)^2) ). See A369441.

A372370 Coefficient of x^n in the expansion of ( (1+x+x^2)^2 / (1+x) )^n.

Original entry on oeis.org

1, 1, 5, 13, 53, 176, 677, 2451, 9333, 34978, 133580, 508806, 1953701, 7509178, 28981643, 112046213, 434289525, 1686080622, 6557830310, 25542229740, 99622788428, 389023326600, 1520817551742, 5951305115982, 23310374278437, 91380414955176, 358506409488102
Offset: 0

Views

Author

Seiichi Manyama, Apr 28 2024

Keywords

Crossrefs

Programs

  • Mathematica
    a[n_]:=SeriesCoefficient[((1+x+x^2)^2/(1+x))^n,{x,0,n}]; Array[a,27,0] (* Stefano Spezia, Apr 30 2024 *)
  • PARI
    a(n, s=2, t=2, u=-1) = sum(k=0, n\s, binomial(t*n, k)*binomial((t+u)*n-k, n-s*k));

Formula

a(n) = Sum_{k=0..floor(n/2)} binomial(2*n,k) * binomial(n-k,n-2*k).
The g.f. exp( Sum_{k>=1} a(k) * x^k/k ) has integer coefficients and equals (1/x) * Series_Reversion( x * (1+x) / (1+x+x^2)^2 ).
Showing 1-4 of 4 results.